Cargando…

Can Electric Nose Breath Analysis Identify Abdominal Wall Hernia Recurrence and Aortic Aneurysms? A Proof-of-Concept Study

Introduction. This pilot study evaluates if an electronic nose (eNose) can distinguish patients at risk for recurrent hernia formation and aortic aneurysm patients from healthy controls based on volatile organic compound analysis in exhaled air. Both hernia recurrence and aortic aneurysm are linked...

Descripción completa

Detalles Bibliográficos
Autores principales: Mommers, Elwin H. H., van Kooten, Lottie, Nienhuijs, Simon W., de Vries Reilingh, Tammo S., Lubbers, Tim, Mees, Barend M. E., Schurink, Geert Willem H., Bouvy, Nicole D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804369/
https://www.ncbi.nlm.nih.gov/pubmed/32449457
http://dx.doi.org/10.1177/1553350620917898
Descripción
Sumario:Introduction. This pilot study evaluates if an electronic nose (eNose) can distinguish patients at risk for recurrent hernia formation and aortic aneurysm patients from healthy controls based on volatile organic compound analysis in exhaled air. Both hernia recurrence and aortic aneurysm are linked to impaired collagen metabolism. If patients at risk for hernia recurrence and aortic aneurysms can be identified in a reliable, low-cost, noninvasive manner, it would greatly enhance preventive options such as prophylactic mesh placement after abdominal surgery. Methods. From February to July 2017, a 3-armed proof-of-concept study was conducted at 3 hospitals including 3 groups of patients (recurrent ventral hernia, aortic aneurysm, and healthy controls). Patients were measured once at the outpatient clinic using an eNose with 3 metal-oxide sensors. A total of 64 patients (hernia, n = 29; aneurysm, n = 35) and 37 controls were included. Data were analyzed by an automated neural network, a type of self-learning software to distinguish patients from controls. Results. Receiver operating curves showed that the automated neural network was able to differentiate between recurrent hernia patients and controls (area under the curve 0.74, sensitivity 0.79, and specificity 0.65) as well as between aortic aneurysm patients and healthy controls (area under the curve 0.84, sensitivity 0.83, and specificity of 0.81). Conclusion. This pilot study shows that the eNose can distinguish patients at risk for recurrent hernia and aortic aneurysm formation from healthy controls.