Cargando…
Amorphous metal oxide semiconductor thin film, analog memristor, and autonomous local learning for neuromorphic systems
Artificial intelligence is a promising concept in modern and future societies. Presently, software programs are used but with a bulky computer size and large power consumption. Conversely, hardware systems named neuromorphic systems are suggested, with a compact computer size and low power consumpti...
Autores principales: | Kimura, Mutsumi, Sumida, Ryo, Kurasaki, Ayata, Imai, Takahito, Takishita, Yuta, Nakashima, Yasuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804431/ https://www.ncbi.nlm.nih.gov/pubmed/33436757 http://dx.doi.org/10.1038/s41598-020-79806-w |
Ejemplares similares
-
Neuromorphic chip integrated with a large-scale integration circuit and amorphous-metal-oxide semiconductor thin-film synapse devices
por: Kimura, Mutsumi, et al.
Publicado: (2022) -
Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing
por: Wang, Rui, et al.
Publicado: (2018) -
Memristive Characteristic of an Amorphous Ga-Sn-O Thin-Film Device with Double Layers of Different Oxygen Density
por: Kurasaki, Ayata, et al.
Publicado: (2019) -
Memristive characteristic of an amorphous Ga-Sn-O thin-film device
por: Sugisaki, Sumio, et al.
Publicado: (2019) -
Sputtering-deposited amorphous SrVO(x)-based memristor for use in neuromorphic computing
por: Lee, Tae-Ju, et al.
Publicado: (2020)