Cargando…

Convective meniscus splitting of polysaccharide microparticles on various surfaces

In contrast to convective self-assembly methods for colloidal crystals etc., “convective meniscus splitting method” was developed to fabricate three-dimensionally ordered polymeric structures. By controlling the geometry of evaporative interface of polymer solution, a deposited membrane with uniaxia...

Descripción completa

Detalles Bibliográficos
Autores principales: Okeyoshi, Kosuke, Yamashita, Miki, Budpud, Kulisara, Joshi, Gargi, Kaneko, Tatsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804455/
https://www.ncbi.nlm.nih.gov/pubmed/33436957
http://dx.doi.org/10.1038/s41598-020-80779-z
Descripción
Sumario:In contrast to convective self-assembly methods for colloidal crystals etc., “convective meniscus splitting method” was developed to fabricate three-dimensionally ordered polymeric structures. By controlling the geometry of evaporative interface of polymer solution, a deposited membrane with uniaxial orientation and layered structures can be prepared. Here it is demonstrated that xanthan gum polysaccharide microparticles with diameter ~ 1 µm can bridge a millimeter-scale gap to form such a membrane because the capillary force among the particles is more dominant than the gravitational force on the evaporative interface. This method is applicable for various substrates with a wide range of wettability (water contact angle, 11°–111°), such as glass, metals, and plastics. The specific deposition can be also confirmed between frosted glasses, functional-molecules-modified glasses, and gold-sputtered substrates. By using such a universal method, the membrane formed on a polydimethylsiloxane surface using this method will provide a new strategy to design a functional polysaccharide wall in microfluidic devices, such as mass-separators.