Cargando…
Predicting Age From Optical Coherence Tomography Scans With Deep Learning
PURPOSE: To assess whether age can be predicted from deep learning analysis of peripapillary spectral-domain optical coherence tomography (SD-OCT) B-scans and to determine the importance of specific retinal areas on the predictions. METHODS: Deep learning (DL) convolutional neural networks were deve...
Autores principales: | Shigueoka, Leonardo S., Mariottoni, Eduardo B., Thompson, Atalie C., Jammal, Alessandro A., Costa, Vital P., Medeiros, Felipe A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804495/ https://www.ncbi.nlm.nih.gov/pubmed/33510951 http://dx.doi.org/10.1167/tvst.10.1.12 |
Ejemplares similares
-
Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm
por: Jammal, Alessandro A., et al.
Publicado: (2019) -
Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach
por: Mariottoni, Eduardo B., et al.
Publicado: (2020) -
Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning
por: Medeiros, Felipe A., et al.
Publicado: (2021) -
A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression
por: Thompson, Atalie C., et al.
Publicado: (2020) -
An objective structural and functional reference standard in glaucoma
por: Mariottoni, Eduardo B., et al.
Publicado: (2021)