Cargando…
Optimization using the firefly algorithm of ensemble neural networks with type-2 fuzzy integration for COVID-19 time series prediction
In this paper, the latest global COVID-19 pandemic prediction is addressed. Each country worldwide has faced this pandemic differently, reflected in its statistical number of confirmed and death cases. Predicting the number of confirmed and death cases could allow us to know the future number of cas...
Autores principales: | Melin, Patricia, Sánchez, Daniela, Monica, Julio Cesar, Castillo, Oscar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804581/ https://www.ncbi.nlm.nih.gov/pubmed/33456340 http://dx.doi.org/10.1007/s00500-020-05549-5 |
Ejemplares similares
-
A new prediction approach of the COVID-19 virus pandemic behavior with a hybrid ensemble modular nonlinear autoregressive neural network
por: Melin, Patricia, et al.
Publicado: (2020) -
Multiple Ensemble Neural Network Models with Fuzzy Response Aggregation for Predicting COVID-19 Time Series: The Case of Mexico
por: Melin, Patricia, et al.
Publicado: (2020) -
Ensembles of type 2 fuzzy neural models and their optimization with bio-inspired algorithms for time series prediction
por: Soto, Jesús, et al.
Publicado: (2017) -
Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction
por: Castillo, Oscar, et al.
Publicado: (2022) -
Chemical optimization algorithm for fuzzy controller design
por: Astudillo, Leslie, et al.
Publicado: (2014)