Cargando…
Machine learning models predict coagulopathy in spontaneous intracerebral hemorrhage patients in ER
AIMS: Coagulation abnormality is one of the primary concerns for patients with spontaneous intracerebral hemorrhage admitted to ER. Conventional laboratory indicators require hours for coagulopathy diagnosis, which brings difficulties for appropriate intervention within the optimal window. This stud...
Autores principales: | Zhu, Fengping, Pan, Zhiguang, Tang, Ying, Fu, Pengfei, Cheng, Sijie, Hou, Wenzhong, Zhang, Qi, Huang, Hong, Sun, Yirui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804781/ https://www.ncbi.nlm.nih.gov/pubmed/33249760 http://dx.doi.org/10.1111/cns.13509 |
Ejemplares similares
-
Intracerebral Hemorrhaging Due to Coagulopathy Caused by Latent Advanced Prostate Cancer
por: Johno, Takashi, et al.
Publicado: (2020) -
Coagulopathy reversal in intracerebral haemorrhage
por: Sweidan, Alexander Jacob, et al.
Publicado: (2020) -
Spontaneous intracerebral hemorrhage in CADASIL
por: Lian, Lifei, et al.
Publicado: (2013) -
Spontaneous Intracerebral Hemorrhage: Management
por: Kim, Jun Yup, et al.
Publicado: (2017) -
Management of Spontaneous Intracerebral Hemorrhage
por: Veltkamp, Roland, et al.
Publicado: (2017)