Cargando…

Greek Sage Exhibits Neuroprotective Activity against Amyloid Beta-Induced Toxicity

Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting the elderly at a high incidence. AD is of unknown etiology and currently, no cure is available. Present medication is restricted to treating symptoms; thus, a need exists for the development of effective remedies....

Descripción completa

Detalles Bibliográficos
Autores principales: Ververis, Antonis, Savvidou, Georgia, Ioannou, Kristia, Nicolaou, Paschalis, Christodoulou, Kyproula, Plioukas, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805276/
https://www.ncbi.nlm.nih.gov/pubmed/33505483
http://dx.doi.org/10.1155/2020/2975284
Descripción
Sumario:Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting the elderly at a high incidence. AD is of unknown etiology and currently, no cure is available. Present medication is restricted to treating symptoms; thus, a need exists for the development of effective remedies. Medicinal plants constitute a large pool, from which active compounds of great pharmaceutical potential can be derived. Various Salvia spp. are considered as neuroprotective, and here, the ability of Salvia fruticosa (SF) to protect against toxic effects induced in an AD cell model was partly assessed. Two of AD's characteristic hallmarks are the presence of elevated oxidative stress levels and the cytotoxic aggregation of amyloid beta (Aβ) peptides. Thus, we obtained SF extracts in three different solvents of increasing polarity, consecutively, to evaluate (a) their antioxidant capacity with the employment of the free radical scavenging assay (DPPH(•)), of the ferric reducing ability of plasma assay (FRAP), and of the cellular reactive oxygen species assay (DCFDA) and (b) their neuroprotective properties against Aβ(25–35)-induced cell death with the use of an MTT assay. All three SF extracts showed a considerable antioxidant capacity, with the methanol (SFM) extract being the strongest. The results of the total phenolic and flavonoid contents (TPC and TFC) of the extracts and of the FRAP and the DCFDA assays showed a similar pattern. In addition, and most importantly, the dichloromethane (SFD) and the petroleum ether (SFP) extracts had an effect on Aβ toxicity, exhibiting a significant neuroprotective potential. To our knowledge, this is the first report of SF extracts demonstrating neuroprotective potential against Aβ toxicity. In combination with their antioxidant capacity, SF extracts may be beneficial in combating AD and other neurodegenerative diseases.