Cargando…

Federated Learning used for predicting outcomes in SARS-COV-2 patients

‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict futur...

Descripción completa

Detalles Bibliográficos
Autores principales: Flores, Mona, Dayan, Ittai, Roth, Holger, Zhong, Aoxiao, Harouni, Ahmed, Gentili, Amilcare, Abidin, Anas, Liu, Andrew, Costa, Anthony, Wood, Bradford, Tsai, Chien-Sung, Wang, Chih-Hung, Hsu, Chun-Nan, Lee, CK, Ruan, Colleen, Xu, Daguang, Wu, Dufan, Huang, Eddie, Kitamura, Felipe, Lacey, Griffin, César de Antônio Corradi, Gustavo, Shin, Hao-Hsin, Obinata, Hirofumi, Ren, Hui, Crane, Jason, Tetreault, Jesse, Guan, Jiahui, Garrett, John, Park, Jung Gil, Dreyer, Keith, Juluru, Krishna, Kersten, Kristopher, Bezerra Cavalcanti Rockenbach, Marcio Aloisio, Linguraru, Marius, Haider, Masoom, AbdelMaseeh, Meena, Rieke, Nicola, Damasceno, Pablo, Cruz e Silva, Pedro Mario, Wang, Pochuan, Xu, Sheng, Kawano, Shuichi, Sriswasdi, Sira, Park, Soo Young, Grist, Thomas, Buch, Varun, Jantarabenjakul, Watsamon, Wang, Weichung, Tak, Won Young, Li, Xiang, Lin, Xihong, Kwon, Fred, Gilbert, Fiona, Kaggie, Josh, Li, Quanzheng, Quraini, Abood, Feng, Andrew, Priest, Andrew, Turkbey, Baris, Glicksberg, Benjamin, Bizzo, Bernardo, Kim, Byung Seok, Tor-Diez, Carlos, Lee, Chia-Cheng, Hsu, Chia-Jung, Lin, Chin, Lai, Chiu-Ling, Hess, Christopher, Compas, Colin, Bhatia, Deepi, Oermann, Eric, Leibovitz, Evan, Sasaki, Hisashi, Mori, Hitoshi, Yang, Isaac, Sohn, Jae Ho, Keshava Murthy, Krishna Nand, Fu, Li-Chen, Furtado de Mendonça, Matheus Ribeiro, Fralick, Mike, Kang, Min Kyu, Adil, Mohammad, Gangai, Natalie, Vateekul, Peerapon, Elnajjar, Pierre, Hickman, Sarah, Majumdar, Sharmila, McLeod, Shelley, Reed, Sheridan, Graf, Stefan, Harmon, Stephanie, Kodama, Tatsuya, Puthanakit, Thanyawee, Mazzulli, Tony, de Lima Lavor, Vitor, Rakvongthai, Yothin, Lee, Yu Rim, Wen, Yuhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805458/
https://www.ncbi.nlm.nih.gov/pubmed/33442676
http://dx.doi.org/10.21203/rs.3.rs-126892/v1
_version_ 1783636314798686208
author Flores, Mona
Dayan, Ittai
Roth, Holger
Zhong, Aoxiao
Harouni, Ahmed
Gentili, Amilcare
Abidin, Anas
Liu, Andrew
Costa, Anthony
Wood, Bradford
Tsai, Chien-Sung
Wang, Chih-Hung
Hsu, Chun-Nan
Lee, CK
Ruan, Colleen
Xu, Daguang
Wu, Dufan
Huang, Eddie
Kitamura, Felipe
Lacey, Griffin
César de Antônio Corradi, Gustavo
Shin, Hao-Hsin
Obinata, Hirofumi
Ren, Hui
Crane, Jason
Tetreault, Jesse
Guan, Jiahui
Garrett, John
Park, Jung Gil
Dreyer, Keith
Juluru, Krishna
Kersten, Kristopher
Bezerra Cavalcanti Rockenbach, Marcio Aloisio
Linguraru, Marius
Haider, Masoom
AbdelMaseeh, Meena
Rieke, Nicola
Damasceno, Pablo
Cruz e Silva, Pedro Mario
Wang, Pochuan
Xu, Sheng
Kawano, Shuichi
Sriswasdi, Sira
Park, Soo Young
Grist, Thomas
Buch, Varun
Jantarabenjakul, Watsamon
Wang, Weichung
Tak, Won Young
Li, Xiang
Lin, Xihong
Kwon, Fred
Gilbert, Fiona
Kaggie, Josh
Li, Quanzheng
Quraini, Abood
Feng, Andrew
Priest, Andrew
Turkbey, Baris
Glicksberg, Benjamin
Bizzo, Bernardo
Kim, Byung Seok
Tor-Diez, Carlos
Lee, Chia-Cheng
Hsu, Chia-Jung
Lin, Chin
Lai, Chiu-Ling
Hess, Christopher
Compas, Colin
Bhatia, Deepi
Oermann, Eric
Leibovitz, Evan
Sasaki, Hisashi
Mori, Hitoshi
Yang, Isaac
Sohn, Jae Ho
Keshava Murthy, Krishna Nand
Fu, Li-Chen
Furtado de Mendonça, Matheus Ribeiro
Fralick, Mike
Kang, Min Kyu
Adil, Mohammad
Gangai, Natalie
Vateekul, Peerapon
Elnajjar, Pierre
Hickman, Sarah
Majumdar, Sharmila
McLeod, Shelley
Reed, Sheridan
Graf, Stefan
Harmon, Stephanie
Kodama, Tatsuya
Puthanakit, Thanyawee
Mazzulli, Tony
de Lima Lavor, Vitor
Rakvongthai, Yothin
Lee, Yu Rim
Wen, Yuhong
author_facet Flores, Mona
Dayan, Ittai
Roth, Holger
Zhong, Aoxiao
Harouni, Ahmed
Gentili, Amilcare
Abidin, Anas
Liu, Andrew
Costa, Anthony
Wood, Bradford
Tsai, Chien-Sung
Wang, Chih-Hung
Hsu, Chun-Nan
Lee, CK
Ruan, Colleen
Xu, Daguang
Wu, Dufan
Huang, Eddie
Kitamura, Felipe
Lacey, Griffin
César de Antônio Corradi, Gustavo
Shin, Hao-Hsin
Obinata, Hirofumi
Ren, Hui
Crane, Jason
Tetreault, Jesse
Guan, Jiahui
Garrett, John
Park, Jung Gil
Dreyer, Keith
Juluru, Krishna
Kersten, Kristopher
Bezerra Cavalcanti Rockenbach, Marcio Aloisio
Linguraru, Marius
Haider, Masoom
AbdelMaseeh, Meena
Rieke, Nicola
Damasceno, Pablo
Cruz e Silva, Pedro Mario
Wang, Pochuan
Xu, Sheng
Kawano, Shuichi
Sriswasdi, Sira
Park, Soo Young
Grist, Thomas
Buch, Varun
Jantarabenjakul, Watsamon
Wang, Weichung
Tak, Won Young
Li, Xiang
Lin, Xihong
Kwon, Fred
Gilbert, Fiona
Kaggie, Josh
Li, Quanzheng
Quraini, Abood
Feng, Andrew
Priest, Andrew
Turkbey, Baris
Glicksberg, Benjamin
Bizzo, Bernardo
Kim, Byung Seok
Tor-Diez, Carlos
Lee, Chia-Cheng
Hsu, Chia-Jung
Lin, Chin
Lai, Chiu-Ling
Hess, Christopher
Compas, Colin
Bhatia, Deepi
Oermann, Eric
Leibovitz, Evan
Sasaki, Hisashi
Mori, Hitoshi
Yang, Isaac
Sohn, Jae Ho
Keshava Murthy, Krishna Nand
Fu, Li-Chen
Furtado de Mendonça, Matheus Ribeiro
Fralick, Mike
Kang, Min Kyu
Adil, Mohammad
Gangai, Natalie
Vateekul, Peerapon
Elnajjar, Pierre
Hickman, Sarah
Majumdar, Sharmila
McLeod, Shelley
Reed, Sheridan
Graf, Stefan
Harmon, Stephanie
Kodama, Tatsuya
Puthanakit, Thanyawee
Mazzulli, Tony
de Lima Lavor, Vitor
Rakvongthai, Yothin
Lee, Yu Rim
Wen, Yuhong
author_sort Flores, Mona
collection PubMed
description ‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the “EXAM” (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration without data exchange, resulting in a model that generalised across heterogeneous, unharmonized datasets. This provided the broader healthcare community with a validated model to respond to COVID-19 challenges, as well as set the stage for broader use of FL in healthcare.
format Online
Article
Text
id pubmed-7805458
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Journal Experts
record_format MEDLINE/PubMed
spelling pubmed-78054582021-01-14 Federated Learning used for predicting outcomes in SARS-COV-2 patients Flores, Mona Dayan, Ittai Roth, Holger Zhong, Aoxiao Harouni, Ahmed Gentili, Amilcare Abidin, Anas Liu, Andrew Costa, Anthony Wood, Bradford Tsai, Chien-Sung Wang, Chih-Hung Hsu, Chun-Nan Lee, CK Ruan, Colleen Xu, Daguang Wu, Dufan Huang, Eddie Kitamura, Felipe Lacey, Griffin César de Antônio Corradi, Gustavo Shin, Hao-Hsin Obinata, Hirofumi Ren, Hui Crane, Jason Tetreault, Jesse Guan, Jiahui Garrett, John Park, Jung Gil Dreyer, Keith Juluru, Krishna Kersten, Kristopher Bezerra Cavalcanti Rockenbach, Marcio Aloisio Linguraru, Marius Haider, Masoom AbdelMaseeh, Meena Rieke, Nicola Damasceno, Pablo Cruz e Silva, Pedro Mario Wang, Pochuan Xu, Sheng Kawano, Shuichi Sriswasdi, Sira Park, Soo Young Grist, Thomas Buch, Varun Jantarabenjakul, Watsamon Wang, Weichung Tak, Won Young Li, Xiang Lin, Xihong Kwon, Fred Gilbert, Fiona Kaggie, Josh Li, Quanzheng Quraini, Abood Feng, Andrew Priest, Andrew Turkbey, Baris Glicksberg, Benjamin Bizzo, Bernardo Kim, Byung Seok Tor-Diez, Carlos Lee, Chia-Cheng Hsu, Chia-Jung Lin, Chin Lai, Chiu-Ling Hess, Christopher Compas, Colin Bhatia, Deepi Oermann, Eric Leibovitz, Evan Sasaki, Hisashi Mori, Hitoshi Yang, Isaac Sohn, Jae Ho Keshava Murthy, Krishna Nand Fu, Li-Chen Furtado de Mendonça, Matheus Ribeiro Fralick, Mike Kang, Min Kyu Adil, Mohammad Gangai, Natalie Vateekul, Peerapon Elnajjar, Pierre Hickman, Sarah Majumdar, Sharmila McLeod, Shelley Reed, Sheridan Graf, Stefan Harmon, Stephanie Kodama, Tatsuya Puthanakit, Thanyawee Mazzulli, Tony de Lima Lavor, Vitor Rakvongthai, Yothin Lee, Yu Rim Wen, Yuhong Res Sq Article ‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the “EXAM” (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration without data exchange, resulting in a model that generalised across heterogeneous, unharmonized datasets. This provided the broader healthcare community with a validated model to respond to COVID-19 challenges, as well as set the stage for broader use of FL in healthcare. American Journal Experts 2021-01-08 /pmc/articles/PMC7805458/ /pubmed/33442676 http://dx.doi.org/10.21203/rs.3.rs-126892/v1 Text en Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Flores, Mona
Dayan, Ittai
Roth, Holger
Zhong, Aoxiao
Harouni, Ahmed
Gentili, Amilcare
Abidin, Anas
Liu, Andrew
Costa, Anthony
Wood, Bradford
Tsai, Chien-Sung
Wang, Chih-Hung
Hsu, Chun-Nan
Lee, CK
Ruan, Colleen
Xu, Daguang
Wu, Dufan
Huang, Eddie
Kitamura, Felipe
Lacey, Griffin
César de Antônio Corradi, Gustavo
Shin, Hao-Hsin
Obinata, Hirofumi
Ren, Hui
Crane, Jason
Tetreault, Jesse
Guan, Jiahui
Garrett, John
Park, Jung Gil
Dreyer, Keith
Juluru, Krishna
Kersten, Kristopher
Bezerra Cavalcanti Rockenbach, Marcio Aloisio
Linguraru, Marius
Haider, Masoom
AbdelMaseeh, Meena
Rieke, Nicola
Damasceno, Pablo
Cruz e Silva, Pedro Mario
Wang, Pochuan
Xu, Sheng
Kawano, Shuichi
Sriswasdi, Sira
Park, Soo Young
Grist, Thomas
Buch, Varun
Jantarabenjakul, Watsamon
Wang, Weichung
Tak, Won Young
Li, Xiang
Lin, Xihong
Kwon, Fred
Gilbert, Fiona
Kaggie, Josh
Li, Quanzheng
Quraini, Abood
Feng, Andrew
Priest, Andrew
Turkbey, Baris
Glicksberg, Benjamin
Bizzo, Bernardo
Kim, Byung Seok
Tor-Diez, Carlos
Lee, Chia-Cheng
Hsu, Chia-Jung
Lin, Chin
Lai, Chiu-Ling
Hess, Christopher
Compas, Colin
Bhatia, Deepi
Oermann, Eric
Leibovitz, Evan
Sasaki, Hisashi
Mori, Hitoshi
Yang, Isaac
Sohn, Jae Ho
Keshava Murthy, Krishna Nand
Fu, Li-Chen
Furtado de Mendonça, Matheus Ribeiro
Fralick, Mike
Kang, Min Kyu
Adil, Mohammad
Gangai, Natalie
Vateekul, Peerapon
Elnajjar, Pierre
Hickman, Sarah
Majumdar, Sharmila
McLeod, Shelley
Reed, Sheridan
Graf, Stefan
Harmon, Stephanie
Kodama, Tatsuya
Puthanakit, Thanyawee
Mazzulli, Tony
de Lima Lavor, Vitor
Rakvongthai, Yothin
Lee, Yu Rim
Wen, Yuhong
Federated Learning used for predicting outcomes in SARS-COV-2 patients
title Federated Learning used for predicting outcomes in SARS-COV-2 patients
title_full Federated Learning used for predicting outcomes in SARS-COV-2 patients
title_fullStr Federated Learning used for predicting outcomes in SARS-COV-2 patients
title_full_unstemmed Federated Learning used for predicting outcomes in SARS-COV-2 patients
title_short Federated Learning used for predicting outcomes in SARS-COV-2 patients
title_sort federated learning used for predicting outcomes in sars-cov-2 patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805458/
https://www.ncbi.nlm.nih.gov/pubmed/33442676
http://dx.doi.org/10.21203/rs.3.rs-126892/v1
work_keys_str_mv AT floresmona federatedlearningusedforpredictingoutcomesinsarscov2patients
AT dayanittai federatedlearningusedforpredictingoutcomesinsarscov2patients
AT rothholger federatedlearningusedforpredictingoutcomesinsarscov2patients
AT zhongaoxiao federatedlearningusedforpredictingoutcomesinsarscov2patients
AT harouniahmed federatedlearningusedforpredictingoutcomesinsarscov2patients
AT gentiliamilcare federatedlearningusedforpredictingoutcomesinsarscov2patients
AT abidinanas federatedlearningusedforpredictingoutcomesinsarscov2patients
AT liuandrew federatedlearningusedforpredictingoutcomesinsarscov2patients
AT costaanthony federatedlearningusedforpredictingoutcomesinsarscov2patients
AT woodbradford federatedlearningusedforpredictingoutcomesinsarscov2patients
AT tsaichiensung federatedlearningusedforpredictingoutcomesinsarscov2patients
AT wangchihhung federatedlearningusedforpredictingoutcomesinsarscov2patients
AT hsuchunnan federatedlearningusedforpredictingoutcomesinsarscov2patients
AT leeck federatedlearningusedforpredictingoutcomesinsarscov2patients
AT ruancolleen federatedlearningusedforpredictingoutcomesinsarscov2patients
AT xudaguang federatedlearningusedforpredictingoutcomesinsarscov2patients
AT wudufan federatedlearningusedforpredictingoutcomesinsarscov2patients
AT huangeddie federatedlearningusedforpredictingoutcomesinsarscov2patients
AT kitamurafelipe federatedlearningusedforpredictingoutcomesinsarscov2patients
AT laceygriffin federatedlearningusedforpredictingoutcomesinsarscov2patients
AT cesardeantoniocorradigustavo federatedlearningusedforpredictingoutcomesinsarscov2patients
AT shinhaohsin federatedlearningusedforpredictingoutcomesinsarscov2patients
AT obinatahirofumi federatedlearningusedforpredictingoutcomesinsarscov2patients
AT renhui federatedlearningusedforpredictingoutcomesinsarscov2patients
AT cranejason federatedlearningusedforpredictingoutcomesinsarscov2patients
AT tetreaultjesse federatedlearningusedforpredictingoutcomesinsarscov2patients
AT guanjiahui federatedlearningusedforpredictingoutcomesinsarscov2patients
AT garrettjohn federatedlearningusedforpredictingoutcomesinsarscov2patients
AT parkjunggil federatedlearningusedforpredictingoutcomesinsarscov2patients
AT dreyerkeith federatedlearningusedforpredictingoutcomesinsarscov2patients
AT julurukrishna federatedlearningusedforpredictingoutcomesinsarscov2patients
AT kerstenkristopher federatedlearningusedforpredictingoutcomesinsarscov2patients
AT bezerracavalcantirockenbachmarcioaloisio federatedlearningusedforpredictingoutcomesinsarscov2patients
AT lingurarumarius federatedlearningusedforpredictingoutcomesinsarscov2patients
AT haidermasoom federatedlearningusedforpredictingoutcomesinsarscov2patients
AT abdelmaseehmeena federatedlearningusedforpredictingoutcomesinsarscov2patients
AT riekenicola federatedlearningusedforpredictingoutcomesinsarscov2patients
AT damascenopablo federatedlearningusedforpredictingoutcomesinsarscov2patients
AT cruzesilvapedromario federatedlearningusedforpredictingoutcomesinsarscov2patients
AT wangpochuan federatedlearningusedforpredictingoutcomesinsarscov2patients
AT xusheng federatedlearningusedforpredictingoutcomesinsarscov2patients
AT kawanoshuichi federatedlearningusedforpredictingoutcomesinsarscov2patients
AT sriswasdisira federatedlearningusedforpredictingoutcomesinsarscov2patients
AT parksooyoung federatedlearningusedforpredictingoutcomesinsarscov2patients
AT gristthomas federatedlearningusedforpredictingoutcomesinsarscov2patients
AT buchvarun federatedlearningusedforpredictingoutcomesinsarscov2patients
AT jantarabenjakulwatsamon federatedlearningusedforpredictingoutcomesinsarscov2patients
AT wangweichung federatedlearningusedforpredictingoutcomesinsarscov2patients
AT takwonyoung federatedlearningusedforpredictingoutcomesinsarscov2patients
AT lixiang federatedlearningusedforpredictingoutcomesinsarscov2patients
AT linxihong federatedlearningusedforpredictingoutcomesinsarscov2patients
AT kwonfred federatedlearningusedforpredictingoutcomesinsarscov2patients
AT gilbertfiona federatedlearningusedforpredictingoutcomesinsarscov2patients
AT kaggiejosh federatedlearningusedforpredictingoutcomesinsarscov2patients
AT liquanzheng federatedlearningusedforpredictingoutcomesinsarscov2patients
AT qurainiabood federatedlearningusedforpredictingoutcomesinsarscov2patients
AT fengandrew federatedlearningusedforpredictingoutcomesinsarscov2patients
AT priestandrew federatedlearningusedforpredictingoutcomesinsarscov2patients
AT turkbeybaris federatedlearningusedforpredictingoutcomesinsarscov2patients
AT glicksbergbenjamin federatedlearningusedforpredictingoutcomesinsarscov2patients
AT bizzobernardo federatedlearningusedforpredictingoutcomesinsarscov2patients
AT kimbyungseok federatedlearningusedforpredictingoutcomesinsarscov2patients
AT tordiezcarlos federatedlearningusedforpredictingoutcomesinsarscov2patients
AT leechiacheng federatedlearningusedforpredictingoutcomesinsarscov2patients
AT hsuchiajung federatedlearningusedforpredictingoutcomesinsarscov2patients
AT linchin federatedlearningusedforpredictingoutcomesinsarscov2patients
AT laichiuling federatedlearningusedforpredictingoutcomesinsarscov2patients
AT hesschristopher federatedlearningusedforpredictingoutcomesinsarscov2patients
AT compascolin federatedlearningusedforpredictingoutcomesinsarscov2patients
AT bhatiadeepi federatedlearningusedforpredictingoutcomesinsarscov2patients
AT oermanneric federatedlearningusedforpredictingoutcomesinsarscov2patients
AT leibovitzevan federatedlearningusedforpredictingoutcomesinsarscov2patients
AT sasakihisashi federatedlearningusedforpredictingoutcomesinsarscov2patients
AT morihitoshi federatedlearningusedforpredictingoutcomesinsarscov2patients
AT yangisaac federatedlearningusedforpredictingoutcomesinsarscov2patients
AT sohnjaeho federatedlearningusedforpredictingoutcomesinsarscov2patients
AT keshavamurthykrishnanand federatedlearningusedforpredictingoutcomesinsarscov2patients
AT fulichen federatedlearningusedforpredictingoutcomesinsarscov2patients
AT furtadodemendoncamatheusribeiro federatedlearningusedforpredictingoutcomesinsarscov2patients
AT fralickmike federatedlearningusedforpredictingoutcomesinsarscov2patients
AT kangminkyu federatedlearningusedforpredictingoutcomesinsarscov2patients
AT adilmohammad federatedlearningusedforpredictingoutcomesinsarscov2patients
AT gangainatalie federatedlearningusedforpredictingoutcomesinsarscov2patients
AT vateekulpeerapon federatedlearningusedforpredictingoutcomesinsarscov2patients
AT elnajjarpierre federatedlearningusedforpredictingoutcomesinsarscov2patients
AT hickmansarah federatedlearningusedforpredictingoutcomesinsarscov2patients
AT majumdarsharmila federatedlearningusedforpredictingoutcomesinsarscov2patients
AT mcleodshelley federatedlearningusedforpredictingoutcomesinsarscov2patients
AT reedsheridan federatedlearningusedforpredictingoutcomesinsarscov2patients
AT grafstefan federatedlearningusedforpredictingoutcomesinsarscov2patients
AT harmonstephanie federatedlearningusedforpredictingoutcomesinsarscov2patients
AT kodamatatsuya federatedlearningusedforpredictingoutcomesinsarscov2patients
AT puthanakitthanyawee federatedlearningusedforpredictingoutcomesinsarscov2patients
AT mazzullitony federatedlearningusedforpredictingoutcomesinsarscov2patients
AT delimalavorvitor federatedlearningusedforpredictingoutcomesinsarscov2patients
AT rakvongthaiyothin federatedlearningusedforpredictingoutcomesinsarscov2patients
AT leeyurim federatedlearningusedforpredictingoutcomesinsarscov2patients
AT wenyuhong federatedlearningusedforpredictingoutcomesinsarscov2patients