Cargando…
Federated Learning used for predicting outcomes in SARS-COV-2 patients
‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict futur...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805458/ https://www.ncbi.nlm.nih.gov/pubmed/33442676 http://dx.doi.org/10.21203/rs.3.rs-126892/v1 |
_version_ | 1783636314798686208 |
---|---|
author | Flores, Mona Dayan, Ittai Roth, Holger Zhong, Aoxiao Harouni, Ahmed Gentili, Amilcare Abidin, Anas Liu, Andrew Costa, Anthony Wood, Bradford Tsai, Chien-Sung Wang, Chih-Hung Hsu, Chun-Nan Lee, CK Ruan, Colleen Xu, Daguang Wu, Dufan Huang, Eddie Kitamura, Felipe Lacey, Griffin César de Antônio Corradi, Gustavo Shin, Hao-Hsin Obinata, Hirofumi Ren, Hui Crane, Jason Tetreault, Jesse Guan, Jiahui Garrett, John Park, Jung Gil Dreyer, Keith Juluru, Krishna Kersten, Kristopher Bezerra Cavalcanti Rockenbach, Marcio Aloisio Linguraru, Marius Haider, Masoom AbdelMaseeh, Meena Rieke, Nicola Damasceno, Pablo Cruz e Silva, Pedro Mario Wang, Pochuan Xu, Sheng Kawano, Shuichi Sriswasdi, Sira Park, Soo Young Grist, Thomas Buch, Varun Jantarabenjakul, Watsamon Wang, Weichung Tak, Won Young Li, Xiang Lin, Xihong Kwon, Fred Gilbert, Fiona Kaggie, Josh Li, Quanzheng Quraini, Abood Feng, Andrew Priest, Andrew Turkbey, Baris Glicksberg, Benjamin Bizzo, Bernardo Kim, Byung Seok Tor-Diez, Carlos Lee, Chia-Cheng Hsu, Chia-Jung Lin, Chin Lai, Chiu-Ling Hess, Christopher Compas, Colin Bhatia, Deepi Oermann, Eric Leibovitz, Evan Sasaki, Hisashi Mori, Hitoshi Yang, Isaac Sohn, Jae Ho Keshava Murthy, Krishna Nand Fu, Li-Chen Furtado de Mendonça, Matheus Ribeiro Fralick, Mike Kang, Min Kyu Adil, Mohammad Gangai, Natalie Vateekul, Peerapon Elnajjar, Pierre Hickman, Sarah Majumdar, Sharmila McLeod, Shelley Reed, Sheridan Graf, Stefan Harmon, Stephanie Kodama, Tatsuya Puthanakit, Thanyawee Mazzulli, Tony de Lima Lavor, Vitor Rakvongthai, Yothin Lee, Yu Rim Wen, Yuhong |
author_facet | Flores, Mona Dayan, Ittai Roth, Holger Zhong, Aoxiao Harouni, Ahmed Gentili, Amilcare Abidin, Anas Liu, Andrew Costa, Anthony Wood, Bradford Tsai, Chien-Sung Wang, Chih-Hung Hsu, Chun-Nan Lee, CK Ruan, Colleen Xu, Daguang Wu, Dufan Huang, Eddie Kitamura, Felipe Lacey, Griffin César de Antônio Corradi, Gustavo Shin, Hao-Hsin Obinata, Hirofumi Ren, Hui Crane, Jason Tetreault, Jesse Guan, Jiahui Garrett, John Park, Jung Gil Dreyer, Keith Juluru, Krishna Kersten, Kristopher Bezerra Cavalcanti Rockenbach, Marcio Aloisio Linguraru, Marius Haider, Masoom AbdelMaseeh, Meena Rieke, Nicola Damasceno, Pablo Cruz e Silva, Pedro Mario Wang, Pochuan Xu, Sheng Kawano, Shuichi Sriswasdi, Sira Park, Soo Young Grist, Thomas Buch, Varun Jantarabenjakul, Watsamon Wang, Weichung Tak, Won Young Li, Xiang Lin, Xihong Kwon, Fred Gilbert, Fiona Kaggie, Josh Li, Quanzheng Quraini, Abood Feng, Andrew Priest, Andrew Turkbey, Baris Glicksberg, Benjamin Bizzo, Bernardo Kim, Byung Seok Tor-Diez, Carlos Lee, Chia-Cheng Hsu, Chia-Jung Lin, Chin Lai, Chiu-Ling Hess, Christopher Compas, Colin Bhatia, Deepi Oermann, Eric Leibovitz, Evan Sasaki, Hisashi Mori, Hitoshi Yang, Isaac Sohn, Jae Ho Keshava Murthy, Krishna Nand Fu, Li-Chen Furtado de Mendonça, Matheus Ribeiro Fralick, Mike Kang, Min Kyu Adil, Mohammad Gangai, Natalie Vateekul, Peerapon Elnajjar, Pierre Hickman, Sarah Majumdar, Sharmila McLeod, Shelley Reed, Sheridan Graf, Stefan Harmon, Stephanie Kodama, Tatsuya Puthanakit, Thanyawee Mazzulli, Tony de Lima Lavor, Vitor Rakvongthai, Yothin Lee, Yu Rim Wen, Yuhong |
author_sort | Flores, Mona |
collection | PubMed |
description | ‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the “EXAM” (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration without data exchange, resulting in a model that generalised across heterogeneous, unharmonized datasets. This provided the broader healthcare community with a validated model to respond to COVID-19 challenges, as well as set the stage for broader use of FL in healthcare. |
format | Online Article Text |
id | pubmed-7805458 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-78054582021-01-14 Federated Learning used for predicting outcomes in SARS-COV-2 patients Flores, Mona Dayan, Ittai Roth, Holger Zhong, Aoxiao Harouni, Ahmed Gentili, Amilcare Abidin, Anas Liu, Andrew Costa, Anthony Wood, Bradford Tsai, Chien-Sung Wang, Chih-Hung Hsu, Chun-Nan Lee, CK Ruan, Colleen Xu, Daguang Wu, Dufan Huang, Eddie Kitamura, Felipe Lacey, Griffin César de Antônio Corradi, Gustavo Shin, Hao-Hsin Obinata, Hirofumi Ren, Hui Crane, Jason Tetreault, Jesse Guan, Jiahui Garrett, John Park, Jung Gil Dreyer, Keith Juluru, Krishna Kersten, Kristopher Bezerra Cavalcanti Rockenbach, Marcio Aloisio Linguraru, Marius Haider, Masoom AbdelMaseeh, Meena Rieke, Nicola Damasceno, Pablo Cruz e Silva, Pedro Mario Wang, Pochuan Xu, Sheng Kawano, Shuichi Sriswasdi, Sira Park, Soo Young Grist, Thomas Buch, Varun Jantarabenjakul, Watsamon Wang, Weichung Tak, Won Young Li, Xiang Lin, Xihong Kwon, Fred Gilbert, Fiona Kaggie, Josh Li, Quanzheng Quraini, Abood Feng, Andrew Priest, Andrew Turkbey, Baris Glicksberg, Benjamin Bizzo, Bernardo Kim, Byung Seok Tor-Diez, Carlos Lee, Chia-Cheng Hsu, Chia-Jung Lin, Chin Lai, Chiu-Ling Hess, Christopher Compas, Colin Bhatia, Deepi Oermann, Eric Leibovitz, Evan Sasaki, Hisashi Mori, Hitoshi Yang, Isaac Sohn, Jae Ho Keshava Murthy, Krishna Nand Fu, Li-Chen Furtado de Mendonça, Matheus Ribeiro Fralick, Mike Kang, Min Kyu Adil, Mohammad Gangai, Natalie Vateekul, Peerapon Elnajjar, Pierre Hickman, Sarah Majumdar, Sharmila McLeod, Shelley Reed, Sheridan Graf, Stefan Harmon, Stephanie Kodama, Tatsuya Puthanakit, Thanyawee Mazzulli, Tony de Lima Lavor, Vitor Rakvongthai, Yothin Lee, Yu Rim Wen, Yuhong Res Sq Article ‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the “EXAM” (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration without data exchange, resulting in a model that generalised across heterogeneous, unharmonized datasets. This provided the broader healthcare community with a validated model to respond to COVID-19 challenges, as well as set the stage for broader use of FL in healthcare. American Journal Experts 2021-01-08 /pmc/articles/PMC7805458/ /pubmed/33442676 http://dx.doi.org/10.21203/rs.3.rs-126892/v1 Text en Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Flores, Mona Dayan, Ittai Roth, Holger Zhong, Aoxiao Harouni, Ahmed Gentili, Amilcare Abidin, Anas Liu, Andrew Costa, Anthony Wood, Bradford Tsai, Chien-Sung Wang, Chih-Hung Hsu, Chun-Nan Lee, CK Ruan, Colleen Xu, Daguang Wu, Dufan Huang, Eddie Kitamura, Felipe Lacey, Griffin César de Antônio Corradi, Gustavo Shin, Hao-Hsin Obinata, Hirofumi Ren, Hui Crane, Jason Tetreault, Jesse Guan, Jiahui Garrett, John Park, Jung Gil Dreyer, Keith Juluru, Krishna Kersten, Kristopher Bezerra Cavalcanti Rockenbach, Marcio Aloisio Linguraru, Marius Haider, Masoom AbdelMaseeh, Meena Rieke, Nicola Damasceno, Pablo Cruz e Silva, Pedro Mario Wang, Pochuan Xu, Sheng Kawano, Shuichi Sriswasdi, Sira Park, Soo Young Grist, Thomas Buch, Varun Jantarabenjakul, Watsamon Wang, Weichung Tak, Won Young Li, Xiang Lin, Xihong Kwon, Fred Gilbert, Fiona Kaggie, Josh Li, Quanzheng Quraini, Abood Feng, Andrew Priest, Andrew Turkbey, Baris Glicksberg, Benjamin Bizzo, Bernardo Kim, Byung Seok Tor-Diez, Carlos Lee, Chia-Cheng Hsu, Chia-Jung Lin, Chin Lai, Chiu-Ling Hess, Christopher Compas, Colin Bhatia, Deepi Oermann, Eric Leibovitz, Evan Sasaki, Hisashi Mori, Hitoshi Yang, Isaac Sohn, Jae Ho Keshava Murthy, Krishna Nand Fu, Li-Chen Furtado de Mendonça, Matheus Ribeiro Fralick, Mike Kang, Min Kyu Adil, Mohammad Gangai, Natalie Vateekul, Peerapon Elnajjar, Pierre Hickman, Sarah Majumdar, Sharmila McLeod, Shelley Reed, Sheridan Graf, Stefan Harmon, Stephanie Kodama, Tatsuya Puthanakit, Thanyawee Mazzulli, Tony de Lima Lavor, Vitor Rakvongthai, Yothin Lee, Yu Rim Wen, Yuhong Federated Learning used for predicting outcomes in SARS-COV-2 patients |
title | Federated Learning used for predicting outcomes in SARS-COV-2 patients |
title_full | Federated Learning used for predicting outcomes in SARS-COV-2 patients |
title_fullStr | Federated Learning used for predicting outcomes in SARS-COV-2 patients |
title_full_unstemmed | Federated Learning used for predicting outcomes in SARS-COV-2 patients |
title_short | Federated Learning used for predicting outcomes in SARS-COV-2 patients |
title_sort | federated learning used for predicting outcomes in sars-cov-2 patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805458/ https://www.ncbi.nlm.nih.gov/pubmed/33442676 http://dx.doi.org/10.21203/rs.3.rs-126892/v1 |
work_keys_str_mv | AT floresmona federatedlearningusedforpredictingoutcomesinsarscov2patients AT dayanittai federatedlearningusedforpredictingoutcomesinsarscov2patients AT rothholger federatedlearningusedforpredictingoutcomesinsarscov2patients AT zhongaoxiao federatedlearningusedforpredictingoutcomesinsarscov2patients AT harouniahmed federatedlearningusedforpredictingoutcomesinsarscov2patients AT gentiliamilcare federatedlearningusedforpredictingoutcomesinsarscov2patients AT abidinanas federatedlearningusedforpredictingoutcomesinsarscov2patients AT liuandrew federatedlearningusedforpredictingoutcomesinsarscov2patients AT costaanthony federatedlearningusedforpredictingoutcomesinsarscov2patients AT woodbradford federatedlearningusedforpredictingoutcomesinsarscov2patients AT tsaichiensung federatedlearningusedforpredictingoutcomesinsarscov2patients AT wangchihhung federatedlearningusedforpredictingoutcomesinsarscov2patients AT hsuchunnan federatedlearningusedforpredictingoutcomesinsarscov2patients AT leeck federatedlearningusedforpredictingoutcomesinsarscov2patients AT ruancolleen federatedlearningusedforpredictingoutcomesinsarscov2patients AT xudaguang federatedlearningusedforpredictingoutcomesinsarscov2patients AT wudufan federatedlearningusedforpredictingoutcomesinsarscov2patients AT huangeddie federatedlearningusedforpredictingoutcomesinsarscov2patients AT kitamurafelipe federatedlearningusedforpredictingoutcomesinsarscov2patients AT laceygriffin federatedlearningusedforpredictingoutcomesinsarscov2patients AT cesardeantoniocorradigustavo federatedlearningusedforpredictingoutcomesinsarscov2patients AT shinhaohsin federatedlearningusedforpredictingoutcomesinsarscov2patients AT obinatahirofumi federatedlearningusedforpredictingoutcomesinsarscov2patients AT renhui federatedlearningusedforpredictingoutcomesinsarscov2patients AT cranejason federatedlearningusedforpredictingoutcomesinsarscov2patients AT tetreaultjesse federatedlearningusedforpredictingoutcomesinsarscov2patients AT guanjiahui federatedlearningusedforpredictingoutcomesinsarscov2patients AT garrettjohn federatedlearningusedforpredictingoutcomesinsarscov2patients AT parkjunggil federatedlearningusedforpredictingoutcomesinsarscov2patients AT dreyerkeith federatedlearningusedforpredictingoutcomesinsarscov2patients AT julurukrishna federatedlearningusedforpredictingoutcomesinsarscov2patients AT kerstenkristopher federatedlearningusedforpredictingoutcomesinsarscov2patients AT bezerracavalcantirockenbachmarcioaloisio federatedlearningusedforpredictingoutcomesinsarscov2patients AT lingurarumarius federatedlearningusedforpredictingoutcomesinsarscov2patients AT haidermasoom federatedlearningusedforpredictingoutcomesinsarscov2patients AT abdelmaseehmeena federatedlearningusedforpredictingoutcomesinsarscov2patients AT riekenicola federatedlearningusedforpredictingoutcomesinsarscov2patients AT damascenopablo federatedlearningusedforpredictingoutcomesinsarscov2patients AT cruzesilvapedromario federatedlearningusedforpredictingoutcomesinsarscov2patients AT wangpochuan federatedlearningusedforpredictingoutcomesinsarscov2patients AT xusheng federatedlearningusedforpredictingoutcomesinsarscov2patients AT kawanoshuichi federatedlearningusedforpredictingoutcomesinsarscov2patients AT sriswasdisira federatedlearningusedforpredictingoutcomesinsarscov2patients AT parksooyoung federatedlearningusedforpredictingoutcomesinsarscov2patients AT gristthomas federatedlearningusedforpredictingoutcomesinsarscov2patients AT buchvarun federatedlearningusedforpredictingoutcomesinsarscov2patients AT jantarabenjakulwatsamon federatedlearningusedforpredictingoutcomesinsarscov2patients AT wangweichung federatedlearningusedforpredictingoutcomesinsarscov2patients AT takwonyoung federatedlearningusedforpredictingoutcomesinsarscov2patients AT lixiang federatedlearningusedforpredictingoutcomesinsarscov2patients AT linxihong federatedlearningusedforpredictingoutcomesinsarscov2patients AT kwonfred federatedlearningusedforpredictingoutcomesinsarscov2patients AT gilbertfiona federatedlearningusedforpredictingoutcomesinsarscov2patients AT kaggiejosh federatedlearningusedforpredictingoutcomesinsarscov2patients AT liquanzheng federatedlearningusedforpredictingoutcomesinsarscov2patients AT qurainiabood federatedlearningusedforpredictingoutcomesinsarscov2patients AT fengandrew federatedlearningusedforpredictingoutcomesinsarscov2patients AT priestandrew federatedlearningusedforpredictingoutcomesinsarscov2patients AT turkbeybaris federatedlearningusedforpredictingoutcomesinsarscov2patients AT glicksbergbenjamin federatedlearningusedforpredictingoutcomesinsarscov2patients AT bizzobernardo federatedlearningusedforpredictingoutcomesinsarscov2patients AT kimbyungseok federatedlearningusedforpredictingoutcomesinsarscov2patients AT tordiezcarlos federatedlearningusedforpredictingoutcomesinsarscov2patients AT leechiacheng federatedlearningusedforpredictingoutcomesinsarscov2patients AT hsuchiajung federatedlearningusedforpredictingoutcomesinsarscov2patients AT linchin federatedlearningusedforpredictingoutcomesinsarscov2patients AT laichiuling federatedlearningusedforpredictingoutcomesinsarscov2patients AT hesschristopher federatedlearningusedforpredictingoutcomesinsarscov2patients AT compascolin federatedlearningusedforpredictingoutcomesinsarscov2patients AT bhatiadeepi federatedlearningusedforpredictingoutcomesinsarscov2patients AT oermanneric federatedlearningusedforpredictingoutcomesinsarscov2patients AT leibovitzevan federatedlearningusedforpredictingoutcomesinsarscov2patients AT sasakihisashi federatedlearningusedforpredictingoutcomesinsarscov2patients AT morihitoshi federatedlearningusedforpredictingoutcomesinsarscov2patients AT yangisaac federatedlearningusedforpredictingoutcomesinsarscov2patients AT sohnjaeho federatedlearningusedforpredictingoutcomesinsarscov2patients AT keshavamurthykrishnanand federatedlearningusedforpredictingoutcomesinsarscov2patients AT fulichen federatedlearningusedforpredictingoutcomesinsarscov2patients AT furtadodemendoncamatheusribeiro federatedlearningusedforpredictingoutcomesinsarscov2patients AT fralickmike federatedlearningusedforpredictingoutcomesinsarscov2patients AT kangminkyu federatedlearningusedforpredictingoutcomesinsarscov2patients AT adilmohammad federatedlearningusedforpredictingoutcomesinsarscov2patients AT gangainatalie federatedlearningusedforpredictingoutcomesinsarscov2patients AT vateekulpeerapon federatedlearningusedforpredictingoutcomesinsarscov2patients AT elnajjarpierre federatedlearningusedforpredictingoutcomesinsarscov2patients AT hickmansarah federatedlearningusedforpredictingoutcomesinsarscov2patients AT majumdarsharmila federatedlearningusedforpredictingoutcomesinsarscov2patients AT mcleodshelley federatedlearningusedforpredictingoutcomesinsarscov2patients AT reedsheridan federatedlearningusedforpredictingoutcomesinsarscov2patients AT grafstefan federatedlearningusedforpredictingoutcomesinsarscov2patients AT harmonstephanie federatedlearningusedforpredictingoutcomesinsarscov2patients AT kodamatatsuya federatedlearningusedforpredictingoutcomesinsarscov2patients AT puthanakitthanyawee federatedlearningusedforpredictingoutcomesinsarscov2patients AT mazzullitony federatedlearningusedforpredictingoutcomesinsarscov2patients AT delimalavorvitor federatedlearningusedforpredictingoutcomesinsarscov2patients AT rakvongthaiyothin federatedlearningusedforpredictingoutcomesinsarscov2patients AT leeyurim federatedlearningusedforpredictingoutcomesinsarscov2patients AT wenyuhong federatedlearningusedforpredictingoutcomesinsarscov2patients |