Cargando…
A fully automated crystallization apparatus for small protein quantities
In 2003, a fully automated protein crystallization and monitoring system (PXS) was developed to support the structural genomics projects that were initiated in the early 2000s. In PXS, crystallization plates were automatically set up using the vapor-diffusion method, transferred to incubators and au...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805554/ https://www.ncbi.nlm.nih.gov/pubmed/33439153 http://dx.doi.org/10.1107/S2053230X20015514 |
_version_ | 1783636333691928576 |
---|---|
author | Kato, Ryuichi Hiraki, Masahiko Yamada, Yusuke Tanabe, Mikio Senda, Toshiya |
author_facet | Kato, Ryuichi Hiraki, Masahiko Yamada, Yusuke Tanabe, Mikio Senda, Toshiya |
author_sort | Kato, Ryuichi |
collection | PubMed |
description | In 2003, a fully automated protein crystallization and monitoring system (PXS) was developed to support the structural genomics projects that were initiated in the early 2000s. In PXS, crystallization plates were automatically set up using the vapor-diffusion method, transferred to incubators and automatically observed according to a pre-set schedule. The captured images of each crystallization drop could be monitored through the internet using a web browser. While the screening throughput of PXS was very high, the demands of users have gradually changed over the ensuing years. To study difficult proteins, it has become important to screen crystallization conditions using small amounts of proteins. Moreover, membrane proteins have become one of the main targets for X-ray crystallography. Therefore, to meet the evolving demands of users, PXS was upgraded to PXS2. In PXS2, the minimum volume of the dispenser is reduced to 0.1 µl to minimize the amount of sample, and the resolution of the captured images is increased to five million pixels in order to observe small crystallization drops in detail. In addition to the 20°C incubators, a 4°C incubator was installed in PXS2 because crystallization results may vary with temperature. To support membrane-protein crystallization, PXS2 includes a procedure for the bicelle method. In addition, the system supports a lipidic cubic phase (LCP) method that uses a film sandwich plate and that was specifically designed for PXS2. These improvements expand the applicability of PXS2, reducing the bottleneck of X-ray protein crystallography. |
format | Online Article Text |
id | pubmed-7805554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-78055542021-02-05 A fully automated crystallization apparatus for small protein quantities Kato, Ryuichi Hiraki, Masahiko Yamada, Yusuke Tanabe, Mikio Senda, Toshiya Acta Crystallogr F Struct Biol Commun Isdsb In 2003, a fully automated protein crystallization and monitoring system (PXS) was developed to support the structural genomics projects that were initiated in the early 2000s. In PXS, crystallization plates were automatically set up using the vapor-diffusion method, transferred to incubators and automatically observed according to a pre-set schedule. The captured images of each crystallization drop could be monitored through the internet using a web browser. While the screening throughput of PXS was very high, the demands of users have gradually changed over the ensuing years. To study difficult proteins, it has become important to screen crystallization conditions using small amounts of proteins. Moreover, membrane proteins have become one of the main targets for X-ray crystallography. Therefore, to meet the evolving demands of users, PXS was upgraded to PXS2. In PXS2, the minimum volume of the dispenser is reduced to 0.1 µl to minimize the amount of sample, and the resolution of the captured images is increased to five million pixels in order to observe small crystallization drops in detail. In addition to the 20°C incubators, a 4°C incubator was installed in PXS2 because crystallization results may vary with temperature. To support membrane-protein crystallization, PXS2 includes a procedure for the bicelle method. In addition, the system supports a lipidic cubic phase (LCP) method that uses a film sandwich plate and that was specifically designed for PXS2. These improvements expand the applicability of PXS2, reducing the bottleneck of X-ray protein crystallography. International Union of Crystallography 2021-01-01 /pmc/articles/PMC7805554/ /pubmed/33439153 http://dx.doi.org/10.1107/S2053230X20015514 Text en © Kato et al. 2021 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Isdsb Kato, Ryuichi Hiraki, Masahiko Yamada, Yusuke Tanabe, Mikio Senda, Toshiya A fully automated crystallization apparatus for small protein quantities |
title | A fully automated crystallization apparatus for small protein quantities |
title_full | A fully automated crystallization apparatus for small protein quantities |
title_fullStr | A fully automated crystallization apparatus for small protein quantities |
title_full_unstemmed | A fully automated crystallization apparatus for small protein quantities |
title_short | A fully automated crystallization apparatus for small protein quantities |
title_sort | fully automated crystallization apparatus for small protein quantities |
topic | Isdsb |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805554/ https://www.ncbi.nlm.nih.gov/pubmed/33439153 http://dx.doi.org/10.1107/S2053230X20015514 |
work_keys_str_mv | AT katoryuichi afullyautomatedcrystallizationapparatusforsmallproteinquantities AT hirakimasahiko afullyautomatedcrystallizationapparatusforsmallproteinquantities AT yamadayusuke afullyautomatedcrystallizationapparatusforsmallproteinquantities AT tanabemikio afullyautomatedcrystallizationapparatusforsmallproteinquantities AT sendatoshiya afullyautomatedcrystallizationapparatusforsmallproteinquantities AT katoryuichi fullyautomatedcrystallizationapparatusforsmallproteinquantities AT hirakimasahiko fullyautomatedcrystallizationapparatusforsmallproteinquantities AT yamadayusuke fullyautomatedcrystallizationapparatusforsmallproteinquantities AT tanabemikio fullyautomatedcrystallizationapparatusforsmallproteinquantities AT sendatoshiya fullyautomatedcrystallizationapparatusforsmallproteinquantities |