Cargando…
From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving
Reinforcement learning is generally accepted to be an appropriate and successful method to learn robot control. Symbolic action planning is useful to resolve causal dependencies and to break a causally complex problem down into a sequence of simpler high-level actions. A problem with the integration...
Autores principales: | Eppe, Manfred, Nguyen, Phuong D. H., Wermter, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805615/ https://www.ncbi.nlm.nih.gov/pubmed/33501138 http://dx.doi.org/10.3389/frobt.2019.00123 |
Ejemplares similares
-
Expectation Learning for Stimulus Prediction Across Modalities Improves Unisensory Classification
por: Barros, Pablo, et al.
Publicado: (2019) -
Affect-Driven Learning of Robot Behaviour for Collaborative Human-Robot Interactions
por: Churamani, Nikhil, et al.
Publicado: (2022) -
Child-Robot Collaborative Problem-Solving and the Importance of Child's Voluntary Interaction: A Developmental Perspective
por: Charisi, Vicky, et al.
Publicado: (2020) -
Primitive Action Based Combined Task and Motion Planning for the Service Robot
por: Jeon, Jeongmin, et al.
Publicado: (2022) -
Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People
por: Lu, Chen-Lung, et al.
Publicado: (2021)