Cargando…
Reactive Reinforcement Learning in Asynchronous Environments
The relationship between a reinforcement learning (RL) agent and an asynchronous environment is often ignored. Frequently used models of the interaction between an agent and its environment, such as Markov Decision Processes (MDP) or Semi-Markov Decision Processes (SMDP), do not capture the fact tha...
Autores principales: | Travnik, Jaden B., Mathewson, Kory W., Sutton, Richard S., Pilarski, Patrick M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805616/ https://www.ncbi.nlm.nih.gov/pubmed/33500958 http://dx.doi.org/10.3389/frobt.2018.00079 |
Ejemplares similares
-
Reinforcement Learning With Human Advice: A Survey
por: Najar, Anis, et al.
Publicado: (2021) -
Machine Teaching for Human Inverse Reinforcement Learning
por: Lee, Michael S., et al.
Publicado: (2021) -
Reinforcement Learning-Based Tracking Control of USVs in Varying Operational Conditions
por: Martinsen, Andreas B., et al.
Publicado: (2020) -
Multi-Channel Interactive Reinforcement Learning for Sequential Tasks
por: Koert, Dorothea, et al.
Publicado: (2020) -
Estimating spatio-temporal fields through reinforcement learning
por: Padrao, Paulo, et al.
Publicado: (2022)