Cargando…
Using Multiple Decomposition Methods and Cluster Analysis to Find and Categorize Typical Patterns of EEG Activity in Motor Imagery Brain–Computer Interface Experiments
In this study, the sources of EEG activity in motor imagery brain–computer interface (BCI) control experiments were investigated. Sixteen linear decomposition methods for EEG source separation were compared according to different criteria. The criteria were mutual information reduction between the s...
Autores principales: | Frolov, Alexander, Bobrov, Pavel, Biryukova, Elena, Isaev, Mikhail, Kerechanin, Yaroslav, Bobrov, Dmitry, Lekin, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805631/ https://www.ncbi.nlm.nih.gov/pubmed/33501255 http://dx.doi.org/10.3389/frobt.2020.00088 |
Ejemplares similares
-
High Classification Accuracy of a Motor Imagery Based Brain-Computer Interface for Stroke Rehabilitation Training
por: Irimia, Danut C., et al.
Publicado: (2018) -
Symbol Emergence as an Interpersonal Multimodal Categorization
por: Hagiwara, Yoshinobu, et al.
Publicado: (2019) -
A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization
por: Tatiya, Gyan, et al.
Publicado: (2020) -
Maize Tassel Detection From UAV Imagery Using Deep Learning
por: Alzadjali, Aziza, et al.
Publicado: (2021) -
Spatio-temporal categorization for first-person-view videos using a convolutional variational autoencoder and Gaussian processes
por: Nagano, Masatoshi, et al.
Publicado: (2022)