Cargando…

Shift Aggregate Extract Networks

We introduce an architecture based on deep hierarchical decompositions to learn effective representations of large graphs. Our framework extends classic R-decompositions used in kernel methods, enabling nested part-of-part relations. Unlike recursive neural networks, which unroll a template on input...

Descripción completa

Detalles Bibliográficos
Autores principales: Orsini, Francesco, Baracchi, Daniele, Frasconi, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805653/
https://www.ncbi.nlm.nih.gov/pubmed/33500928
http://dx.doi.org/10.3389/frobt.2018.00042

Ejemplares similares