Cargando…
Shift Aggregate Extract Networks
We introduce an architecture based on deep hierarchical decompositions to learn effective representations of large graphs. Our framework extends classic R-decompositions used in kernel methods, enabling nested part-of-part relations. Unlike recursive neural networks, which unroll a template on input...
Autores principales: | Orsini, Francesco, Baracchi, Daniele, Frasconi, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805653/ https://www.ncbi.nlm.nih.gov/pubmed/33500928 http://dx.doi.org/10.3389/frobt.2018.00042 |
Ejemplares similares
-
Attitude Stabilization of Spacecraft in Very Low Earth Orbit by Center-Of-Mass Shifting
por: Virgili-Llop, Josep, et al.
Publicado: (2019) -
Editorial: Hot topic: Reducing operating times and complication rates through robot-assisted surgery
por: Cafolla, Daniele, et al.
Publicado: (2022) -
Editorial: On-Orbit Servicing and Active Debris Removal: Enabling a Paradigm Shift in Spaceflight
por: Wilde, Markus, et al.
Publicado: (2019) -
Effect of underactuated parallelogram shape-shifting for environmental adaptation movement of a three modular in-pipe robot
por: Kakogawa, Atsushi, et al.
Publicado: (2023) -
Weight Shift Movements of a Social Mediator Robot Make It Being Recognized as Serious and Suppress Anger, Revenge and Avoidance Motivation of the User
por: Noguchi, Yohei, et al.
Publicado: (2022)