Cargando…
Toward Accurate Visual Reasoning With Dual-Path Neural Module Networks
Visual reasoning is a critical stage in visual question answering (Antol et al., 2015), but most of the state-of-the-art methods categorized the VQA tasks as a classification problem without taking the reasoning process into account. Various approaches are proposed to solve this multi-modal task tha...
Autores principales: | Su, Ke, Su, Hang, Li, Jianguo, Zhu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805672/ https://www.ncbi.nlm.nih.gov/pubmed/33501276 http://dx.doi.org/10.3389/frobt.2020.00109 |
Ejemplares similares
-
A Neural Network With Logical Reasoning Based on Auxiliary Inputs
por: Wan, Fang, et al.
Publicado: (2018) -
Adaptivity: a path towards general swarm intelligence?
por: Kwa, Hian Lee, et al.
Publicado: (2023) -
A Bayesian Deep Neural Network for Safe Visual Servoing in Human–Robot Interaction
por: Shi, Lei, et al.
Publicado: (2021) -
Editorial: Robots that Learn and Reason: Towards Learning Logic Rules from Noisy Data
por: Moreno, Plinio, et al.
Publicado: (2021) -
Integrating Non-monotonic Logical Reasoning and Inductive Learning With Deep Learning for Explainable Visual Question Answering
por: Riley, Heather, et al.
Publicado: (2019)