Cargando…
Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams
In the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite re...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805753/ https://www.ncbi.nlm.nih.gov/pubmed/33500951 http://dx.doi.org/10.3389/frobt.2018.00072 |
_version_ | 1783636373326004224 |
---|---|
author | Näf, Matthias B. Koopman, Axel S. Baltrusch, Saskia Rodriguez-Guerrero, Carlos Vanderborght, Bram Lefeber, Dirk |
author_facet | Näf, Matthias B. Koopman, Axel S. Baltrusch, Saskia Rodriguez-Guerrero, Carlos Vanderborght, Bram Lefeber, Dirk |
author_sort | Näf, Matthias B. |
collection | PubMed |
description | In the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite recent advances in the development of exoskeletons for industrial applications, they are not widely adopted by industry yet. Some of the challenges, which have to be overcome are a reduced range of motion, misalignment between the human anatomy and kinematics of the exoskeleton as well as discomfort. A body of research exists on how an exoskeleton can be designed to compensate for misalignment and thereby improve comfort. However, how to design an exoskeleton that achieves a similar range of motion as a human lumbar spine of up to 60° in the sagittal plane, has not been extensively investigated. We addressed this need by developing and testing a novel passive back support exoskeleton, including a mechanism comprised of flexible beams, which run in parallel to the spine, providing a large range of motion and lowering the peak torque requirements around the lumbo-sacral (L5/S1) joint. Furthermore, we ran a pilot study to test the biomechanical (N = 2) and functional (N = 3) impact on subjects while wearing the exoskeleton. The biomechanical testing was once performed with flexible beams as a back interface and once with a rigid structure. An increase of more than 25% range of motion of the trunk in the sagittal plane was observed by using the flexible beams. The pilot functional tests, which are compared to results from a previous study with the Laevo device, suggest, that the novel exoskeleton is perceived as less hindering in almost all tested tasks. |
format | Online Article Text |
id | pubmed-7805753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78057532021-01-25 Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams Näf, Matthias B. Koopman, Axel S. Baltrusch, Saskia Rodriguez-Guerrero, Carlos Vanderborght, Bram Lefeber, Dirk Front Robot AI Robotics and AI In the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite recent advances in the development of exoskeletons for industrial applications, they are not widely adopted by industry yet. Some of the challenges, which have to be overcome are a reduced range of motion, misalignment between the human anatomy and kinematics of the exoskeleton as well as discomfort. A body of research exists on how an exoskeleton can be designed to compensate for misalignment and thereby improve comfort. However, how to design an exoskeleton that achieves a similar range of motion as a human lumbar spine of up to 60° in the sagittal plane, has not been extensively investigated. We addressed this need by developing and testing a novel passive back support exoskeleton, including a mechanism comprised of flexible beams, which run in parallel to the spine, providing a large range of motion and lowering the peak torque requirements around the lumbo-sacral (L5/S1) joint. Furthermore, we ran a pilot study to test the biomechanical (N = 2) and functional (N = 3) impact on subjects while wearing the exoskeleton. The biomechanical testing was once performed with flexible beams as a back interface and once with a rigid structure. An increase of more than 25% range of motion of the trunk in the sagittal plane was observed by using the flexible beams. The pilot functional tests, which are compared to results from a previous study with the Laevo device, suggest, that the novel exoskeleton is perceived as less hindering in almost all tested tasks. Frontiers Media S.A. 2018-06-21 /pmc/articles/PMC7805753/ /pubmed/33500951 http://dx.doi.org/10.3389/frobt.2018.00072 Text en Copyright © 2018 Näf, Koopman, Baltrusch, Rodriguez-Guerrero, Vanderborght and Lefeber. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Robotics and AI Näf, Matthias B. Koopman, Axel S. Baltrusch, Saskia Rodriguez-Guerrero, Carlos Vanderborght, Bram Lefeber, Dirk Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams |
title | Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams |
title_full | Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams |
title_fullStr | Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams |
title_full_unstemmed | Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams |
title_short | Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams |
title_sort | passive back support exoskeleton improves range of motion using flexible beams |
topic | Robotics and AI |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805753/ https://www.ncbi.nlm.nih.gov/pubmed/33500951 http://dx.doi.org/10.3389/frobt.2018.00072 |
work_keys_str_mv | AT nafmatthiasb passivebacksupportexoskeletonimprovesrangeofmotionusingflexiblebeams AT koopmanaxels passivebacksupportexoskeletonimprovesrangeofmotionusingflexiblebeams AT baltruschsaskia passivebacksupportexoskeletonimprovesrangeofmotionusingflexiblebeams AT rodriguezguerrerocarlos passivebacksupportexoskeletonimprovesrangeofmotionusingflexiblebeams AT vanderborghtbram passivebacksupportexoskeletonimprovesrangeofmotionusingflexiblebeams AT lefeberdirk passivebacksupportexoskeletonimprovesrangeofmotionusingflexiblebeams |