Cargando…
Structure-Preserving Imitation Learning With Delayed Reward: An Evaluation Within the RoboCup Soccer 2D Simulation Environment
We describe and evaluate a neural network-based architecture aimed to imitate and improve the performance of a fully autonomous soccer team in RoboCup Soccer 2D Simulation environment. The approach utilizes deep Q-network architecture for action determination and a deep neural network for parameter...
Autores principales: | Nguyen, Quang Dang, Prokopenko, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805756/ https://www.ncbi.nlm.nih.gov/pubmed/33501289 http://dx.doi.org/10.3389/frobt.2020.00123 |
Ejemplares similares
-
RoboCup 2004 : Robot Soccer World Cup VIII /
Publicado: (2005) -
RoboCup 2013
por: Behnke, Sven, et al.
Publicado: (2014) -
RoboCup 2018
por: Holz, Dirk, et al.
Publicado: (2019) -
RoboCUP 2014
por: Bianchi, Reinaldo A C, et al.
Publicado: (2015) -
Moving robotics competitions virtual: The case study of RoboCupJunior Soccer Simulation (SoccerSim)
por: Martins, Felipe N., et al.
Publicado: (2022)