Cargando…
HVGH: Unsupervised Segmentation for High-Dimensional Time Series Using Deep Neural Compression and Statistical Generative Model
Humans perceive continuous high-dimensional information by dividing it into meaningful segments, such as words and units of motion. We believe that such unsupervised segmentation is also important for robots to learn topics such as language and motion. To this end, we previously proposed a hierarchi...
Autores principales: | Nagano, Masatoshi, Nakamura, Tomoaki, Nagai, Takayuki, Mochihashi, Daichi, Kobayashi, Ichiro, Takano, Wataru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805757/ https://www.ncbi.nlm.nih.gov/pubmed/33501130 http://dx.doi.org/10.3389/frobt.2019.00115 |
Ejemplares similares
-
Spatio-temporal categorization for first-person-view videos using a convolutional variational autoencoder and Gaussian processes
por: Nagano, Masatoshi, et al.
Publicado: (2022) -
Editorial: Language and Robotics
por: Taniguchi, Tadahiro, et al.
Publicado: (2021) -
Combining Unsupervised and Supervised Learning for Sample Efficient Continuous Language Grounding
por: Roesler, Oliver
Publicado: (2022) -
Unsupervised Learning Facilitates Neural Coordination Across the Functional Clusters of the C. elegans Connectome
por: Morales, Alejandro, et al.
Publicado: (2020) -
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
por: Nakamura, Tomoaki, et al.
Publicado: (2017)