Cargando…
Modeling Task Uncertainty for Safe Meta-Imitation Learning
To endow robots with the flexibility to perform a wide range of tasks in diverse and complex environments, learning their controller from experience data is a promising approach. In particular, some recent meta-learning methods are shown to solve novel tasks by leveraging their experience of perform...
Autores principales: | Matsushima, Tatsuya, Kondo, Naruya, Iwasawa, Yusuke, Nasuno, Kaoru, Matsuo, Yutaka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805769/ https://www.ncbi.nlm.nih.gov/pubmed/33501364 http://dx.doi.org/10.3389/frobt.2020.606361 |
Ejemplares similares
-
Imitating by Generating: Deep Generative Models for Imitation of Interactive Tasks
por: Bütepage, Judith, et al.
Publicado: (2020) -
An Adaptive Imitation Learning Framework for Robotic Complex Contact-Rich Insertion Tasks
por: Wang, Yan, et al.
Publicado: (2022) -
Safe Model-Based Reinforcement Learning for Systems With Parametric Uncertainties
por: Mahmud, S. M. Nahid, et al.
Publicado: (2021) -
Improving Autonomous Robotic Navigation Using Imitation Learning
por: Cèsar-Tondreau, Brian, et al.
Publicado: (2021) -
Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation
por: Ashith Shyam, R. B., et al.
Publicado: (2021)