Cargando…
Statistical Relational Learning With Unconventional String Models
This paper shows how methods from statistical relational learning can be used to address problems in grammatical inference using model-theoretic representations of strings. These model-theoretic representations are the basis of representing formal languages logically. Conventional representations in...
Autores principales: | Vu, Mai H., Zehfroosh, Ashkan, Strother-Garcia, Kristina, Sebok, Michael, Heinz, Jeffrey, Tanner, Herbert G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805770/ https://www.ncbi.nlm.nih.gov/pubmed/33500955 http://dx.doi.org/10.3389/frobt.2018.00076 |
Ejemplares similares
-
A Hybrid PAC Reinforcement Learning Algorithm for Human-Robot Interaction
por: Zehfroosh, Ashkan, et al.
Publicado: (2022) -
Non-Smooth Control Barrier Navigation Functions for STL Motion Planning
por: Zehfroosh, Ashkan, et al.
Publicado: (2022) -
Editorial: Statistical Relational Artificial Intelligence
por: Riguzzi, Fabrizio, et al.
Publicado: (2019) -
Aerial Swarm Defense by StringNet Herding: Theory and Experiments
por: Chipade, Vishnu S., et al.
Publicado: (2021) -
Editorial: Thought leaders in robotics and AI
por: Tanner, Herbert G.
Publicado: (2023)