Cargando…
Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery
Discovering (or planning) a new drug candidate involves many parameters, which makes this process slow, costly, and leading to failures at the end in some cases. In the last decades, we have witnessed a revolution in the computational area (hardware, software, large-scale computing, etc.), as well a...
Autores principales: | Lipinski, Celio F., Maltarollo, Vinicius G., Oliveira, Patricia R., da Silva, Alberico B. F., Honorio, Kathia Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805776/ https://www.ncbi.nlm.nih.gov/pubmed/33501123 http://dx.doi.org/10.3389/frobt.2019.00108 |
Ejemplares similares
-
Applying Deep Reinforcement Learning to Cable Driven Parallel Robots for Balancing Unstable Loads: A Ball Case Study
por: Grimshaw, Alex, et al.
Publicado: (2021) -
Connecting the Dots of Social Robot Design From Interviews With Robot Creators
por: Alves-Oliveira, Patrícia, et al.
Publicado: (2022) -
Emotion Recognition for Human-Robot Interaction: Recent Advances and Future Perspectives
por: Spezialetti, Matteo, et al.
Publicado: (2020) -
Designing for culturally responsive social robots: An application of a participatory framework
por: Louie, Belinda, et al.
Publicado: (2022) -
Editorial: The Art of Human-Robot Interaction: Creative Perspectives From Design and the Arts
por: Herath, Damith, et al.
Publicado: (2022)