Cargando…

The Influence of Distance and Lateral Offset of Follow Me Robots on User Perception

Robots that are designed to work in close proximity to humans are required to move and act in a way that ensures social acceptance by their users. Hence, a robot's proximal behavior toward a human is a main concern, especially in human-robot interaction that relies on relatively close proximity...

Descripción completa

Detalles Bibliográficos
Autores principales: Siebert, Felix Wilhelm, Klein, Jacobe, Rötting, Matthias, Roesler, Eileen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805831/
https://www.ncbi.nlm.nih.gov/pubmed/33501241
http://dx.doi.org/10.3389/frobt.2020.00074
Descripción
Sumario:Robots that are designed to work in close proximity to humans are required to move and act in a way that ensures social acceptance by their users. Hence, a robot's proximal behavior toward a human is a main concern, especially in human-robot interaction that relies on relatively close proximity. This study investigated how the distance and lateral offset of “Follow Me” robots influences how they are perceived by humans. To this end, a Follow Me robot was built and tested in a user study for a number of subjective variables. A total of 18 participants interacted with the robot, with the robot's lateral offset and distance varied in a within-subject design. After each interaction, participants were asked to rate the movement of the robot on the dimensions of comfort, expectancy conformity, human likeness, safety, trust, and unobtrusiveness. Results show that users generally prefer robot following distances in the social space, without a lateral offset. However, we found a main influence of affinity for technology, as those participants with a high affinity for technology preferred closer following distances than participants with low affinity for technology. The results of this study show the importance of user-adaptiveness in human-robot-interaction.