Cargando…
Self-Optimization in Continuous-Time Recurrent Neural Networks
A recent advance in complex adaptive systems has revealed a new unsupervised learning technique called self-modeling or self-optimization. Basically, a complex network that can form an associative memory of the state configurations of the attractors on which it converges will optimize its structure:...
Autores principales: | Zarco, Mario, Froese, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805835/ https://www.ncbi.nlm.nih.gov/pubmed/33500975 http://dx.doi.org/10.3389/frobt.2018.00096 |
Ejemplares similares
-
Unsupervised Learning Facilitates Neural Coordination Across the Functional Clusters of the C. elegans Connectome
por: Morales, Alejandro, et al.
Publicado: (2020) -
A Recurrent Neural-Network-Based Real-Time Dynamic Model for Soft Continuum Manipulators
por: Tariverdi, Abbas, et al.
Publicado: (2021) -
Combining Self-Organizing and Graph Neural Networks for Modeling Deformable Objects in Robotic Manipulation
por: Valencia, Angel J., et al.
Publicado: (2020) -
Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization
por: Pagliuca, Paolo, et al.
Publicado: (2020) -
Neural-Dynamic Based Synchronous-Optimization Scheme of Dual Redundant Robot Manipulators
por: Zhang, Zhijun, et al.
Publicado: (2018)