Cargando…
Compositional Learning of Human Activities With a Self-Organizing Neural Architecture
An important step for assistive systems and robot companions operating in human environments is to learn the compositionality of human activities, i.e., recognize both activities and their comprising actions. Most existing approaches address action and activity recognition as separate tasks, i.e., a...
Autores principales: | Mici, Luiza, Parisi, German I., Wermter, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805845/ https://www.ncbi.nlm.nih.gov/pubmed/33501087 http://dx.doi.org/10.3389/frobt.2019.00072 |
Ejemplares similares
-
Expectation Learning for Stimulus Prediction Across Modalities Improves Unisensory Classification
por: Barros, Pablo, et al.
Publicado: (2019) -
Self-organized Learning from Synthetic and Real-World Data for a Humanoid Exercise Robot
por: Duczek, Nicolas, et al.
Publicado: (2022) -
Affect-Driven Learning of Robot Behaviour for Collaborative Human-Robot Interactions
por: Churamani, Nikhil, et al.
Publicado: (2022) -
From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving
por: Eppe, Manfred, et al.
Publicado: (2019) -
WoZ4U: An Open-Source Wizard-of-Oz Interface for Easy, Efficient and Robust HRI Experiments
por: Rietz, Finn, et al.
Publicado: (2021)