Cargando…
Computational Intelligence for Studying Sustainability Challenges: Tools and Methods for Dealing With Deep Uncertainty and Complexity
The study of sustainability challenges requires the consideration of multiple coupled systems that are often complex and deeply uncertain. As a result, traditional analytical methods offer limited insights with respect to how to best address such challenges. By analyzing the case of global climate c...
Autores principales: | Molina-Perez, Edmundo, Esquivel-Flores, Oscar A., Zamora-Maldonado, Hilda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805846/ https://www.ncbi.nlm.nih.gov/pubmed/33501278 http://dx.doi.org/10.3389/frobt.2020.00111 |
Ejemplares similares
-
Modeling Uncertainty for the Double Standard Model Using a Fuzzy Inference System
por: Torres, Noelia, et al.
Publicado: (2018) -
Editorial: Computational intelligence advances in educational robotics
por: Bellas, Francisco, et al.
Publicado: (2023) -
Modeling Task Uncertainty for Safe Meta-Imitation Learning
por: Matsushima, Tatsuya, et al.
Publicado: (2020) -
Opinion Mining From Social Media Short Texts: Does Collective Intelligence Beat Deep Learning?
por: Tsapatsoulis, Nicolas, et al.
Publicado: (2019) -
Neural Network Based Uncertainty Prediction for Autonomous Vehicle Application
por: Zhang, Feihu, et al.
Publicado: (2019)