Cargando…
Unsupervised Learning Facilitates Neural Coordination Across the Functional Clusters of the C. elegans Connectome
Modeling of complex adaptive systems has revealed a still poorly understood benefit of unsupervised learning: when neural networks are enabled to form an associative memory of a large set of their own attractor configurations, they begin to reorganize their connectivity in a direction that minimizes...
Autores principales: | Morales, Alejandro, Froese, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805867/ https://www.ncbi.nlm.nih.gov/pubmed/33501208 http://dx.doi.org/10.3389/frobt.2020.00040 |
Ejemplares similares
-
Self-Optimization in Continuous-Time Recurrent Neural Networks
por: Zarco, Mario, et al.
Publicado: (2018) -
Combining Unsupervised and Supervised Learning for Sample Efficient Continuous Language Grounding
por: Roesler, Oliver
Publicado: (2022) -
Classification of multiple sclerosis clinical profiles using machine learning and grey matter connectome
por: Barile, Berardino, et al.
Publicado: (2022) -
HVGH: Unsupervised Segmentation for High-Dimensional Time Series Using Deep Neural Compression and Statistical Generative Model
por: Nagano, Masatoshi, et al.
Publicado: (2019) -
Unsupervised Phoneme and Word Discovery From Multiple Speakers Using Double Articulation Analyzer and Neural Network With Parametric Bias
por: Nakashima, Ryo, et al.
Publicado: (2019)