Cargando…
Human-Guided Learning for Probabilistic Logic Models
Advice-giving has been long explored in the artificial intelligence community to build robust learning algorithms when the data is noisy, incorrect or even insufficient. While logic based systems were effectively used in building expert systems, the role of the human has been restricted to being a “...
Autores principales: | Odom, Phillip, Natarajan, Sriraam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805928/ https://www.ncbi.nlm.nih.gov/pubmed/33500938 http://dx.doi.org/10.3389/frobt.2018.00056 |
Ejemplares similares
-
Few-Shot Induction of Generalized Logical Concepts via Human Guidance
por: Das, Mayukh, et al.
Publicado: (2020) -
Editorial: Statistical Relational Artificial Intelligence
por: Riguzzi, Fabrizio, et al.
Publicado: (2019) -
A Survey on Probabilistic Models in Human Perception and Machines
por: Li, Lux, et al.
Publicado: (2020) -
Symbolic Learning and Reasoning With Noisy Data for Probabilistic Anchoring
por: Zuidberg Dos Martires, Pedro, et al.
Publicado: (2020) -
Editorial: Robots that Learn and Reason: Towards Learning Logic Rules from Noisy Data
por: Moreno, Plinio, et al.
Publicado: (2021)