Cargando…
Bootstrapping of Parameterized Skills Through Hybrid Optimization in Task and Policy Spaces
Modern robotic applications create high demands on adaptation of actions with respect to variance in a given task. Reinforcement learning is able to optimize for these changing conditions, but relearning from scratch is hardly feasible due to the high number of required rollouts. We propose a parame...
Autores principales: | Queißer, Jeffrey F., Steil, Jochen J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805929/ https://www.ncbi.nlm.nih.gov/pubmed/33500934 http://dx.doi.org/10.3389/frobt.2018.00049 |
Ejemplares similares
-
Parameterization of Fuel-Optimal Synchronous Approach Trajectories to Tumbling Targets
por: Sternberg, David Charles, et al.
Publicado: (2018) -
Bootstrapping Virtual Bipedal Walkers with Robotics Scaffolded Learning
por: Zhu, Jiahui, et al.
Publicado: (2021) -
Bayesian optimization with unknown constraints in graphical skill models for compliant manipulation tasks using an industrial robot
por: Gabler, Volker, et al.
Publicado: (2022) -
Real-Time Shape Estimation for Concentric Tube Continuum Robots with a Single Force/Torque Sensor
por: Donat, Heiko, et al.
Publicado: (2021) -
An Autonomous Task Assignment Paradigm for Autonomous Robotic In-Space Assembly
por: Moser, Joshua, et al.
Publicado: (2022)