Cargando…
Artificial Development by Reinforcement Learning Can Benefit From Multiple Motivations
Research on artificial development, reinforcement learning, and intrinsic motivations like curiosity could profit from the recently developed framework of multi-objective reinforcement learning. The combination of these ideas may lead to more realistic artificial models for life-long learning and go...
Autores principales: | Palm, Günther, Schwenker, Friedhelm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805942/ https://www.ncbi.nlm.nih.gov/pubmed/33501023 http://dx.doi.org/10.3389/frobt.2019.00006 |
Ejemplares similares
-
Reactive Reinforcement Learning in Asynchronous Environments
por: Travnik, Jaden B., et al.
Publicado: (2018) -
Intrinsic motivation learning for real robot applications
por: Rayyes, Rania
Publicado: (2023) -
Reinforcement Learning With Human Advice: A Survey
por: Najar, Anis, et al.
Publicado: (2021) -
Machine Teaching for Human Inverse Reinforcement Learning
por: Lee, Michael S., et al.
Publicado: (2021) -
Multi-Channel Interactive Reinforcement Learning for Sequential Tasks
por: Koert, Dorothea, et al.
Publicado: (2020)