Cargando…
High Classification Accuracy of a Motor Imagery Based Brain-Computer Interface for Stroke Rehabilitation Training
Motor imagery (MI) based brain-computer interfaces (BCI) extract commands in real-time and can be used to control a cursor, a robot or functional electrical stimulation (FES) devices. The control of FES devices is especially interesting for stroke rehabilitation, when a patient can use motor imagery...
Autores principales: | Irimia, Danut C., Ortner, Rupert, Poboroniuc, Marian S., Ignat, Bogdan E., Guger, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805943/ https://www.ncbi.nlm.nih.gov/pubmed/33501008 http://dx.doi.org/10.3389/frobt.2018.00130 |
Ejemplares similares
-
Using Multiple Decomposition Methods and Cluster Analysis to Find and Categorize Typical Patterns of EEG Activity in Motor Imagery Brain–Computer Interface Experiments
por: Frolov, Alexander, et al.
Publicado: (2020) -
Optimizing Motor Imagery Parameters for Robotic Arm Control by Brain-Computer Interface
por: Hayta, Ünal, et al.
Publicado: (2022) -
Editorial: Interfacing Humans and Machines for Rehabilitation and Assistive Devices
por: Cifuentes, Carlos A., et al.
Publicado: (2022) -
Paired Associative Stimulation Using Brain-Computer Interfaces for Stroke Rehabilitation: A Pilot Study
por: Cho, Woosang, et al.
Publicado: (2016) -
A novel immersive virtual reality environment for the motor rehabilitation of stroke patients: A feasibility study
por: Fregna, Giulia, et al.
Publicado: (2022)