Cargando…
A Semantics-Assisted Video Captioning Model Trained With Scheduled Sampling
Given the features of a video, recurrent neural networks can be used to automatically generate a caption for the video. Existing methods for video captioning have at least three limitations. First, semantic information has been widely applied to boost the performance of video captioning models, but...
Autores principales: | Chen, Haoran, Lin, Ke, Maye, Alexander, Li, Jianmin, Hu, Xiaolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805957/ https://www.ncbi.nlm.nih.gov/pubmed/33501293 http://dx.doi.org/10.3389/frobt.2020.475767 |
Ejemplares similares
-
Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People
por: Lu, Chen-Lung, et al.
Publicado: (2021) -
Robotic Impedance Learning for Robot-Assisted Physical Training
por: Li, Yanan, et al.
Publicado: (2019) -
Terrain-aware semantic mapping for cooperative subterranean exploration
por: Miles, Michael J., et al.
Publicado: (2023) -
Dynamic Semantic World Models and Increased Situational Awareness for Highly Automated Inland Waterway Transport
por: Van Baelen, Senne, et al.
Publicado: (2022) -
Faster R-CNN for Robust Pedestrian Detection Using Semantic Segmentation Network
por: Liu, Tianrui, et al.
Publicado: (2018)