Cargando…
Imitating by Generating: Deep Generative Models for Imitation of Interactive Tasks
To coordinate actions with an interaction partner requires a constant exchange of sensorimotor signals. Humans acquire these skills in infancy and early childhood mostly by imitation learning and active engagement with a skilled partner. They require the ability to predict and adapt to one's pa...
Autores principales: | Bütepage, Judith, Ghadirzadeh, Ali, Öztimur Karadaǧ, Özge, Björkman, Mårten, Kragic, Danica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806025/ https://www.ncbi.nlm.nih.gov/pubmed/33501215 http://dx.doi.org/10.3389/frobt.2020.00047 |
Ejemplares similares
-
Modeling Task Uncertainty for Safe Meta-Imitation Learning
por: Matsushima, Tatsuya, et al.
Publicado: (2020) -
An Adaptive Imitation Learning Framework for Robotic Complex Contact-Rich Insertion Tasks
por: Wang, Yan, et al.
Publicado: (2022) -
Improving Autonomous Robotic Navigation Using Imitation Learning
por: Cèsar-Tondreau, Brian, et al.
Publicado: (2021) -
Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation
por: Ashith Shyam, R. B., et al.
Publicado: (2021) -
Humanoid Cognitive Robots That Learn by Imitating: Implications for Consciousness Studies
por: Reggia, James A., et al.
Publicado: (2018)