Cargando…
Symbolic Learning and Reasoning With Noisy Data for Probabilistic Anchoring
Robotic agents should be able to learn from sub-symbolic sensor data and, at the same time, be able to reason about objects and communicate with humans on a symbolic level. This raises the question of how to overcome the gap between symbolic and sub-symbolic artificial intelligence. We propose a sem...
Autores principales: | Zuidberg Dos Martires, Pedro, Kumar, Nitesh, Persson, Andreas, Loutfi, Amy, De Raedt, Luc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806026/ https://www.ncbi.nlm.nih.gov/pubmed/33501267 http://dx.doi.org/10.3389/frobt.2020.00100 |
Ejemplares similares
-
Editorial: Robots that Learn and Reason: Towards Learning Logic Rules from Noisy Data
por: Moreno, Plinio, et al.
Publicado: (2021) -
Symbolic Representation and Learning With Hyperdimensional Computing
por: Mitrokhin, Anton, et al.
Publicado: (2020) -
Symbolic-Based Recognition of Contact States for Learning Assembly Skills
por: Al-Yacoub, Ali, et al.
Publicado: (2019) -
Human-Guided Learning for Probabilistic Logic Models
por: Odom, Phillip, et al.
Publicado: (2018) -
Symbol Emergence as an Interpersonal Multimodal Categorization
por: Hagiwara, Yoshinobu, et al.
Publicado: (2019)