Cargando…
Learning to Avoid Obstacles With Minimal Intervention Control
Programming by demonstration has received much attention as it offers a general framework which allows robots to efficiently acquire novel motor skills from a human teacher. While traditional imitation learning that only focuses on either Cartesian or joint space might become inappropriate in situat...
Autores principales: | Duan, Anqing, Camoriano, Raffaello, Ferigo, Diego, Huang, Yanlong, Calandriello, Daniele, Rosasco, Lorenzo, Pucci, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806040/ https://www.ncbi.nlm.nih.gov/pubmed/33501228 http://dx.doi.org/10.3389/frobt.2020.00060 |
Ejemplares similares
-
Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots
por: Kelasidi, Eleni, et al.
Publicado: (2019) -
Kinematic-Model-Free Predictive Control for Robotic Manipulator Target Reaching With Obstacle Avoidance
por: AlAttar, Ahmad, et al.
Publicado: (2022) -
Deep Learning-Based Complete Coverage Path Planning With Re-Joint and Obstacle Fusion Paradigm
por: Lei, Tingjun, et al.
Publicado: (2022) -
Editorial: Bridging the Gap Between the Lab and the Real World: Future Perspectives for Legged Robots
por: Focchi, Michele, et al.
Publicado: (2020) -
Autonomous Obstacle Crossing Strategies for the Hybrid Wheeled-Legged Robot Centauro
por: De Luca, Alessio, et al.
Publicado: (2021)