Cargando…
First-Order Dynamic Modeling and Control of Soft Robots
Modeling of soft robots is typically performed at the static level or at a second-order fully dynamic level. Controllers developed upon these models have several advantages and disadvantages. Static controllers, based on the kinematic relations tend to be the easiest to develop, but by sacrificing a...
Autores principales: | George Thuruthel, Thomas, Renda, Federico, Iida, Fumiya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806042/ https://www.ncbi.nlm.nih.gov/pubmed/33501262 http://dx.doi.org/10.3389/frobt.2020.00095 |
Ejemplares similares
-
Editorial: Machine Learning Techniques for Soft Robots
por: George Thuruthel, Thomas, et al.
Publicado: (2021) -
Autonomous detection and sorting of litter using deep learning and soft robotic grippers
por: Almanzor, Elijah, et al.
Publicado: (2022) -
Data-driven method for damage localization on soft robotic grippers based on motion dynamics
por: Abdulali, Arsen, et al.
Publicado: (2022) -
Editorial: Current Advances in Soft Robotics: Best Papers From RoboSoft 2018
por: Sadati, S. M. Hadi, et al.
Publicado: (2020) -
Using First Principles for Deep Learning and Model-Based Control of Soft Robots
por: Johnson, Curtis C., et al.
Publicado: (2021)