Cargando…
Bridging Weighted Rules and Graph Random Walks for Statistical Relational Models
The aim of statistical relational learning is to learn statistical models from relational or graph-structured data. Three main statistical relational learning paradigms include weighted rule learning, random walks on graphs, and tensor factorization. These paradigms have been mostly developed and st...
Autores principales: | Kazemi, Seyed Mehran, Poole, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806046/ https://www.ncbi.nlm.nih.gov/pubmed/33500895 http://dx.doi.org/10.3389/frobt.2018.00008 |
Ejemplares similares
-
Statistical Relational Learning With Unconventional String Models
por: Vu, Mai H., et al.
Publicado: (2018) -
Editorial: Statistical Relational Artificial Intelligence
por: Riguzzi, Fabrizio, et al.
Publicado: (2019) -
Combining Self-Organizing and Graph Neural Networks for Modeling Deformable Objects in Robotic Manipulation
por: Valencia, Angel J., et al.
Publicado: (2020) -
Gaze Gesture Recognition by Graph Convolutional Networks
por: Shi, Lei, et al.
Publicado: (2021) -
Ethical and Statistical Considerations in Models of Moral Judgments
por: Sivill, Torty
Publicado: (2019)