Cargando…
Combining Self-Organizing and Graph Neural Networks for Modeling Deformable Objects in Robotic Manipulation
Modeling deformable objects is an important preliminary step for performing robotic manipulation tasks with more autonomy and dexterity. Currently, generalization capabilities in unstructured environments using analytical approaches are limited, mainly due to the lack of adaptation to changes in the...
Autores principales: | Valencia, Angel J., Payeur, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806087/ https://www.ncbi.nlm.nih.gov/pubmed/33501360 http://dx.doi.org/10.3389/frobt.2020.600584 |
Ejemplares similares
-
Editorial: Robotic grasping and manipulation of deformable objects
por: Bimbo, Joao, et al.
Publicado: (2023) -
Modeling of Deformable Objects for Robotic Manipulation: A Tutorial and Review
por: Arriola-Rios, Veronica E., et al.
Publicado: (2020) -
Hand-Object Interaction: From Human Demonstrations to Robot Manipulation
por: Carfì, Alessandro, et al.
Publicado: (2021) -
Blind Manipulation of Deformable Objects Based on Force Sensing and Finite Element Modeling
por: Sanchez, Jose, et al.
Publicado: (2020) -
Performance measures to benchmark the grasping, manipulation, and assembly of deformable objects typical to manufacturing applications
por: Kimble, Kenneth, et al.
Publicado: (2022)