Cargando…
Expectation Learning for Stimulus Prediction Across Modalities Improves Unisensory Classification
Expectation learning is a unsupervised learning process which uses multisensory bindings to enhance unisensory perception. For instance, as humans, we learn to associate a barking sound with the visual appearance of a dog, and we continuously fine-tune this association over time, as we learn, e.g.,...
Autores principales: | Barros, Pablo, Eppe, Manfred, Parisi, German I., Liu, Xun, Wermter, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806099/ https://www.ncbi.nlm.nih.gov/pubmed/33501152 http://dx.doi.org/10.3389/frobt.2019.00137 |
Ejemplares similares
-
From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving
por: Eppe, Manfred, et al.
Publicado: (2019) -
Compositional Learning of Human Activities With a Self-Organizing Neural Architecture
por: Mici, Luiza, et al.
Publicado: (2019) -
Affect-Driven Learning of Robot Behaviour for Collaborative Human-Robot Interactions
por: Churamani, Nikhil, et al.
Publicado: (2022) -
Self-organized Learning from Synthetic and Real-World Data for a Humanoid Exercise Robot
por: Duczek, Nicolas, et al.
Publicado: (2022) -
OUTPUT: Choreographed and Reconfigured Human and Industrial Robot Bodies Across Artistic Modalities
por: Cuan, Catie
Publicado: (2021)