Cargando…

Reinforcement Learning-Based Tracking Control of USVs in Varying Operational Conditions

We present a reinforcement learning-based (RL) control scheme for trajectory tracking of fully-actuated surface vessels. The proposed method learns online both a model-based feedforward controller, as well an optimizing feedback policy in order to follow a desired trajectory under the influence of e...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinsen, Andreas B., Lekkas, Anastasios M., Gros, Sébastien, Glomsrud, Jon Arne, Pedersen, Tom Arne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806118/
https://www.ncbi.nlm.nih.gov/pubmed/33501200
http://dx.doi.org/10.3389/frobt.2020.00032
Descripción
Sumario:We present a reinforcement learning-based (RL) control scheme for trajectory tracking of fully-actuated surface vessels. The proposed method learns online both a model-based feedforward controller, as well an optimizing feedback policy in order to follow a desired trajectory under the influence of environmental forces. The method's efficiency is evaluated via simulations and sea trials, with the unmanned surface vehicle (USV) ReVolt performing three different tracking tasks: The four corner DP test, straight-path tracking and curved-path tracking. The results demonstrate the method's ability to accomplish the control objectives and a good agreement between the performance achieved in the Revolt Digital Twin and the sea trials. Finally, we include an section with considerations about assurance for RL-based methods and where our approach stands in terms of the main challenges.