Cargando…
Reinforcement Learning-Based Tracking Control of USVs in Varying Operational Conditions
We present a reinforcement learning-based (RL) control scheme for trajectory tracking of fully-actuated surface vessels. The proposed method learns online both a model-based feedforward controller, as well an optimizing feedback policy in order to follow a desired trajectory under the influence of e...
Autores principales: | Martinsen, Andreas B., Lekkas, Anastasios M., Gros, Sébastien, Glomsrud, Jon Arne, Pedersen, Tom Arne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806118/ https://www.ncbi.nlm.nih.gov/pubmed/33501200 http://dx.doi.org/10.3389/frobt.2020.00032 |
Ejemplares similares
-
Multi-USV Adaptive Exploration Using Kernel Information and Residual Variance
por: Mishra, Rajat, et al.
Publicado: (2021) -
A Semilinear Parameter-Varying Observer Method for Fabric-Reinforced Soft Robots
por: Bui, Phuc D.H., et al.
Publicado: (2021) -
Hybrid Collision Avoidance for ASVs Compliant With COLREGs Rules 8 and 13–17
por: Eriksen, Bjørn-Olav H., et al.
Publicado: (2020) -
Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots
por: Passon, Arne, et al.
Publicado: (2020) -
Assessing the Role of Gaze Tracking in Optimizing Humans-In-The-Loop Telerobotic Operation Using Multimodal Feedback
por: Bolarinwa, Joseph, et al.
Publicado: (2021)