Cargando…
C7ORF41 Regulates Inflammation by Inhibiting NF-κB Signaling Pathway
Inflammation is an important biological process for eliciting immune responses against physiological and pathological stimuli. Inflammation must be efficiently regulated to ensure homeostasis in the body. Nuclear factor-kappa B (NF-κB) signaling is crucial for inflammatory and immune responses. Aber...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806384/ https://www.ncbi.nlm.nih.gov/pubmed/33506033 http://dx.doi.org/10.1155/2021/7413605 |
Sumario: | Inflammation is an important biological process for eliciting immune responses against physiological and pathological stimuli. Inflammation must be efficiently regulated to ensure homeostasis in the body. Nuclear factor-kappa B (NF-κB) signaling is crucial for inflammatory and immune responses. Aberrant activation of NF-κB signaling leads to development of numerous human diseases. In this study, we investigated the function of chromosome 7 open reading frame 41 (C7ORF41) in NF-κB signaling during inflammation. C7ORF41 was upregulated in cells stimulated with tumor necrosis factor-alpha or lipopolysaccharide. Moreover, overexpression of C7ORF41 inhibited the activation of NF-κB and decreased the expression of its downstream target genes. Notably, small hairpin RNA-mediated depletion of C7ORF41 increased the levels of downstream genes and enabled the activation of NF-κB. In conclusion, C7ORF41 negatively regulated inflammation via NF-κB signaling and p65 phosphorylation in vitro. These findings may help to diagnose and prognosticate inflammatory conditions and may help develop new strategies for the management of inflammation-related diseases. |
---|