Cargando…
iT3SE-PX: Identification of Bacterial Type III Secreted Effectors Using PSSM Profiles and XGBoost Feature Selection
Identification of bacterial type III secreted effectors (T3SEs) has become a popular research topic in the field of bioinformatics due to its crucial role in understanding host-pathogen interaction and developing better therapeutic targets against the pathogens. However, the recognition of all effec...
Autores principales: | Ding, Chenchen, Han, Haitao, Li, Qianyue, Yang, Xiaoxia, Liu, Taigang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806399/ https://www.ncbi.nlm.nih.gov/pubmed/33505516 http://dx.doi.org/10.1155/2021/6690299 |
Ejemplares similares
-
iT4SE-EP: Accurate Identification of Bacterial Type IV Secreted Effectors by Exploring Evolutionary Features from Two PSI-BLAST Profiles
por: Han, Haitao, et al.
Publicado: (2021) -
VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost
por: Gong, Yue, et al.
Publicado: (2022) -
HMMPred: Accurate Prediction of DNA-Binding Proteins Based on HMM Profiles and XGBoost Feature Selection
por: Sang, Xiuzhi, et al.
Publicado: (2020) -
Identification of Proteins Secreted by Malaria Parasite into Erythrocyte using SVM and PSSM profiles
por: Verma, Ruchi, et al.
Publicado: (2008) -
EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation
por: Zhou, Jiyun, et al.
Publicado: (2017)