Cargando…
Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer
BACKGROUND: Breast cancer disease is the most common cancer in US women and the second cause of cancer death among women. OBJECTIVES: To compare and evaluate the performance and accuracy of the key supervised and semi-supervised machine learning algorithms for breast cancer prediction. MATERIALS AND...
Autores principales: | Al-Azzam, Nosayba, Shatnawi, Ibrahem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806524/ https://www.ncbi.nlm.nih.gov/pubmed/33489117 http://dx.doi.org/10.1016/j.amsu.2020.12.043 |
Ejemplares similares
-
Comparing supervised and semi-supervised machine learning approaches in NTCP modeling to predict complications in head and neck cancer patients
por: Spiero, I., et al.
Publicado: (2023) -
Semi-supervised learning /
Publicado: (2010) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised and unsupervised machine learning: novel strategies
por: Albalate, Amparo, et al.
Publicado: (2011) -
Semi-supervised learning in cancer diagnostics
por: Eckardt, Jan-Niklas, et al.
Publicado: (2022)