Cargando…
Deep learning based prediction of prognosis in nonmetastatic clear cell renal cell carcinoma
Survival analyses for malignancies, including renal cell carcinoma (RCC), have primarily been conducted using the Cox proportional hazards (CPH) model. We compared the random survival forest (RSF) and DeepSurv models with the CPH model to predict recurrence-free survival (RFS) and cancer-specific su...
Autores principales: | Byun, Seok-Soo, Heo, Tak Sung, Choi, Jeong Myeong, Jeong, Yeong Seok, Kim, Yu Seop, Lee, Won Ki, Kim, Chulho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806580/ https://www.ncbi.nlm.nih.gov/pubmed/33441830 http://dx.doi.org/10.1038/s41598-020-80262-9 |
Ejemplares similares
-
Prediction of Stroke Outcome Using Natural Language Processing-Based Machine Learning of Radiology Report of Brain MRI
por: Heo, Tak Sung, et al.
Publicado: (2020) -
Prognostic Significance of Preoperative Neutrophil-to-Lymphocyte Ratio in Nonmetastatic Renal Cell Carcinoma: A Large, Multicenter Cohort Analysis
por: Byun, Seok-Soo, et al.
Publicado: (2016) -
Decreased Expression of SETD2 Predicts Unfavorable Prognosis in Patients With Nonmetastatic Clear-Cell Renal Cell Carcinoma
por: Liu, Weisi, et al.
Publicado: (2015) -
Renal capsular invasion is a prognostic biomarker in localized clear cell renal cell carcinoma
por: Ha, U-Syn, et al.
Publicado: (2018) -
Effect of Type 2 Diabetes Mellitus on Prognosis of Nonmetastatic Renal Cell Cancer
por: Süer, Evren, et al.
Publicado: (2013)