Cargando…
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
Recent critical commentaries unfavorably compare deep learning (DL) with standard machine learning (SML) approaches for brain imaging data analysis. However, their conclusions are often based on pre-engineered features depriving DL of its main advantage — representation learning. We conduct a large-...
Autores principales: | Abrol, Anees, Fu, Zening, Salman, Mustafa, Silva, Rogers, Du, Yuhui, Plis, Sergey, Calhoun, Vince |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806588/ https://www.ncbi.nlm.nih.gov/pubmed/33441557 http://dx.doi.org/10.1038/s41467-020-20655-6 |
Ejemplares similares
-
Privacy‐preserving quality control of neuroimaging datasets in federated environments
por: Saha, Debbrata K., et al.
Publicado: (2022) -
Individualized spatial network predictions using Siamese convolutional neural networks: A resting-state fMRI study of over 11,000 unaffected individuals
por: Hassanzadeh, Reihaneh, et al.
Publicado: (2022) -
Deep learning for neuroimaging: a validation study
por: Plis, Sergey M., et al.
Publicado: (2014) -
Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
por: Du, Yuhui, et al.
Publicado: (2021) -
Through the looking glass: Deep interpretable dynamic directed connectivity in resting fMRI
por: Mahmood, Usman, et al.
Publicado: (2022)