Cargando…
Bulk-edge correspondence of classical diffusion phenomena
We elucidate that diffusive systems, which are widely found in nature, can be a new platform of the bulk-edge correspondence, a representative topological phenomenon. Using a discretized diffusion equation, we demonstrate the emergence of robust edge states protected by the winding number for one- a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806654/ https://www.ncbi.nlm.nih.gov/pubmed/33441795 http://dx.doi.org/10.1038/s41598-020-80180-w |
Sumario: | We elucidate that diffusive systems, which are widely found in nature, can be a new platform of the bulk-edge correspondence, a representative topological phenomenon. Using a discretized diffusion equation, we demonstrate the emergence of robust edge states protected by the winding number for one- and two-dimensional systems. These topological edge states can be experimentally accessible by measuring diffusive dynamics at edges. Furthermore, we discover a novel diffusion phenomenon by numerically simulating the distribution of temperatures for a honeycomb lattice system; the temperature field with wavenumber [Formula: see text] cannot diffuse to the bulk, which is attributed to the complete localization of the edge state. |
---|