Cargando…
Quantitative evaluation and comparison of coronary artery characteristics by 3D coronary volume reconstruction
Non-atherosclerotic abnormalities of vessel calibre, aneurysm and ectasia, are challenging to quantify and are often overlooked in qualitative reporting. Utilising a novel 3-dimensional (3D) quantitative coronary angiography (QCA) application, we have evaluated the characteristics of normal, diabeti...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806746/ https://www.ncbi.nlm.nih.gov/pubmed/33441962 http://dx.doi.org/10.1038/s41598-020-80928-4 |
Sumario: | Non-atherosclerotic abnormalities of vessel calibre, aneurysm and ectasia, are challenging to quantify and are often overlooked in qualitative reporting. Utilising a novel 3-dimensional (3D) quantitative coronary angiography (QCA) application, we have evaluated the characteristics of normal, diabetic and aneurysmal or ectatic coronary arteries. We selected 131 individuals under 50 years-of-age, who had undergone coronary angiography for suspected myocardial ischaemia between 1st January 2011 and 31st December 2015, at the Bristol Heart Institute, Bristol, UK. This included 42 patients with angiographically normal coronary arteries, 36 diabetic patients with unobstructed coronaries, and 53 patients with abnormal coronary dilatation (aneurysm and ectasia). A total of 1105 coronary segments were analysed using QAngio XA 3D (Research Edition, Medis medical imaging systems, Leiden, The Netherlands). The combined volume of the major coronary arteries was significantly different between each group (1240 ± 476 mm(3) diabetic group, 1646 ± 391 mm(3) normal group, and 2072 ± 687 mm(3) abnormal group). Moreover, the combined coronary artery volumes correlated with patient body surface area (r = 0.483, p < 0.01). Inter-observer variability was assessed and intraclass correlation coefficient of the total coronary artery volume demonstrated a low variability of 3D QCA (r = 0.996, p < 0.001). Dedicated 3D QCA facilitates reproducible coronary artery volume estimation and allows discrimination of normal and diseased vessels. |
---|