Cargando…
Machine learning for pattern and waveform recognitions in terahertz image data
Several machine learning (ML) techniques were tested for the feasibility of performing automated pattern and waveform recognitions of terahertz time-domain spectroscopy datasets. Out of all the ML techniques under test, it was observed that random forest statistical algorithm works well with the THz...
Autores principales: | Bulgarevich, Dmitry S., Talara, Miezel, Tani, Masahiko, Watanabe, Makoto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806755/ https://www.ncbi.nlm.nih.gov/pubmed/33441888 http://dx.doi.org/10.1038/s41598-020-80761-9 |
Ejemplares similares
-
Terahertz Magneto-Optic Sensor/Imager
por: Bulgarevich, Dmitry S., et al.
Publicado: (2020) -
Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures
por: Bulgarevich, Dmitry S., et al.
Publicado: (2018) -
Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools
por: Bulgarevich, Dmitry S., et al.
Publicado: (2019) -
Optimum excitation wavelength and photon energy threshold for spintronic terahertz emission from Fe/Pt bilayer
por: Mag-usara, Valynn Katrine, et al.
Publicado: (2022) -
Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation
por: Bulgarevich, Dmitry S., et al.
Publicado: (2016)