Cargando…
Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results
Utilizing artificial intelligence algorithm of adaptive network-based fuzzy inference system (ANFIS) in combination with the computational lfuid dynamics (CFD) has recently revealed great potential as an auxiliary method for simulating challenging fluid mechnics problems. This research area is at th...
Autores principales: | Babanezhad, Meisam, Behroyan, Iman, Marjani, Azam, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806800/ https://www.ncbi.nlm.nih.gov/pubmed/33441681 http://dx.doi.org/10.1038/s41598-020-79913-8 |
Ejemplares similares
-
Pressure and temperature predictions of Al(2)O(3)/water nanofluid flow in a porous pipe for different nanoparticles volume fractions: combination of CFD and ACOFIS
por: Babanezhad, Meisam, et al.
Publicado: (2021) -
Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
por: Babanezhad, Meisam, et al.
Publicado: (2021) -
Prediction of velocity profile of water based copper nanofluid in a heated porous tube using CFD and genetic algorithm
por: Ciano, Tiziana, et al.
Publicado: (2021) -
Predicting Air Superficial Velocity of Two-Phase Reactors
Using ANFIS and CFD
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Prediction of Nanofluid Characteristics and Flow Pattern
on Artificial Differential Evolution Learning Nodes and Fuzzy Framework
por: Babanezhad, Meisam, et al.
Publicado: (2020)