Cargando…

Image reconstruction through a multimode fiber with a simple neural network architecture

Multimode fibers (MMFs) have the potential to carry complex images for endoscopy and related applications, but decoding the complex speckle patterns produced by mode-mixing and modal dispersion in MMFs is a serious challenge. Several groups have recently shown that convolutional neural networks (CNN...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Changyan, Chan, Eng Aik, Wang, You, Peng, Weina, Guo, Ruixiang, Zhang, Baile, Soci, Cesare, Chong, Yidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806887/
https://www.ncbi.nlm.nih.gov/pubmed/33441671
http://dx.doi.org/10.1038/s41598-020-79646-8
Descripción
Sumario:Multimode fibers (MMFs) have the potential to carry complex images for endoscopy and related applications, but decoding the complex speckle patterns produced by mode-mixing and modal dispersion in MMFs is a serious challenge. Several groups have recently shown that convolutional neural networks (CNNs) can be trained to perform high-fidelity MMF image reconstruction. We find that a considerably simpler neural network architecture, the single hidden layer dense neural network, performs at least as well as previously-used CNNs in terms of image reconstruction fidelity, and is superior in terms of training time and computing resources required. The trained networks can accurately reconstruct MMF images collected over a week after the cessation of the training set, with the dense network performing as well as the CNN over the entire period.