Cargando…

Prediction of lithium response using genomic data

Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine...

Descripción completa

Detalles Bibliográficos
Autores principales: Stone, William, Nunes, Abraham, Akiyama, Kazufumi, Akula, Nirmala, Ardau, Raffaella, Aubry, Jean-Michel, Backlund, Lena, Bauer, Michael, Bellivier, Frank, Cervantes, Pablo, Chen, Hsi-Chung, Chillotti, Caterina, Cruceanu, Cristiana, Dayer, Alexandre, Degenhardt, Franziska, Del Zompo, Maria, Forstner, Andreas J., Frye, Mark, Fullerton, Janice M., Grigoroiu-Serbanescu, Maria, Grof, Paul, Hashimoto, Ryota, Hou, Liping, Jiménez, Esther, Kato, Tadafumi, Kelsoe, John, Kittel-Schneider, Sarah, Kuo, Po-Hsiu, Kusumi, Ichiro, Lavebratt, Catharina, Manchia, Mirko, Martinsson, Lina, Mattheisen, Manuel, McMahon, Francis J., Millischer, Vincent, Mitchell, Philip B., Nöthen, Markus M., O’Donovan, Claire, Ozaki, Norio, Pisanu, Claudia, Reif, Andreas, Rietschel, Marcella, Rouleau, Guy, Rybakowski, Janusz, Schalling, Martin, Schofield, Peter R., Schulze, Thomas G., Severino, Giovanni, Squassina, Alessio, Veeh, Julia, Vieta, Eduard, Trappenberg, Thomas, Alda, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806976/
https://www.ncbi.nlm.nih.gov/pubmed/33441847
http://dx.doi.org/10.1038/s41598-020-80814-z
_version_ 1783636644680695808
author Stone, William
Nunes, Abraham
Akiyama, Kazufumi
Akula, Nirmala
Ardau, Raffaella
Aubry, Jean-Michel
Backlund, Lena
Bauer, Michael
Bellivier, Frank
Cervantes, Pablo
Chen, Hsi-Chung
Chillotti, Caterina
Cruceanu, Cristiana
Dayer, Alexandre
Degenhardt, Franziska
Del Zompo, Maria
Forstner, Andreas J.
Frye, Mark
Fullerton, Janice M.
Grigoroiu-Serbanescu, Maria
Grof, Paul
Hashimoto, Ryota
Hou, Liping
Jiménez, Esther
Kato, Tadafumi
Kelsoe, John
Kittel-Schneider, Sarah
Kuo, Po-Hsiu
Kusumi, Ichiro
Lavebratt, Catharina
Manchia, Mirko
Martinsson, Lina
Mattheisen, Manuel
McMahon, Francis J.
Millischer, Vincent
Mitchell, Philip B.
Nöthen, Markus M.
O’Donovan, Claire
Ozaki, Norio
Pisanu, Claudia
Reif, Andreas
Rietschel, Marcella
Rouleau, Guy
Rybakowski, Janusz
Schalling, Martin
Schofield, Peter R.
Schulze, Thomas G.
Severino, Giovanni
Squassina, Alessio
Veeh, Julia
Vieta, Eduard
Trappenberg, Thomas
Alda, Martin
author_facet Stone, William
Nunes, Abraham
Akiyama, Kazufumi
Akula, Nirmala
Ardau, Raffaella
Aubry, Jean-Michel
Backlund, Lena
Bauer, Michael
Bellivier, Frank
Cervantes, Pablo
Chen, Hsi-Chung
Chillotti, Caterina
Cruceanu, Cristiana
Dayer, Alexandre
Degenhardt, Franziska
Del Zompo, Maria
Forstner, Andreas J.
Frye, Mark
Fullerton, Janice M.
Grigoroiu-Serbanescu, Maria
Grof, Paul
Hashimoto, Ryota
Hou, Liping
Jiménez, Esther
Kato, Tadafumi
Kelsoe, John
Kittel-Schneider, Sarah
Kuo, Po-Hsiu
Kusumi, Ichiro
Lavebratt, Catharina
Manchia, Mirko
Martinsson, Lina
Mattheisen, Manuel
McMahon, Francis J.
Millischer, Vincent
Mitchell, Philip B.
Nöthen, Markus M.
O’Donovan, Claire
Ozaki, Norio
Pisanu, Claudia
Reif, Andreas
Rietschel, Marcella
Rouleau, Guy
Rybakowski, Janusz
Schalling, Martin
Schofield, Peter R.
Schulze, Thomas G.
Severino, Giovanni
Squassina, Alessio
Veeh, Julia
Vieta, Eduard
Trappenberg, Thomas
Alda, Martin
author_sort Stone, William
collection PubMed
description Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen’s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.
format Online
Article
Text
id pubmed-7806976
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78069762021-01-14 Prediction of lithium response using genomic data Stone, William Nunes, Abraham Akiyama, Kazufumi Akula, Nirmala Ardau, Raffaella Aubry, Jean-Michel Backlund, Lena Bauer, Michael Bellivier, Frank Cervantes, Pablo Chen, Hsi-Chung Chillotti, Caterina Cruceanu, Cristiana Dayer, Alexandre Degenhardt, Franziska Del Zompo, Maria Forstner, Andreas J. Frye, Mark Fullerton, Janice M. Grigoroiu-Serbanescu, Maria Grof, Paul Hashimoto, Ryota Hou, Liping Jiménez, Esther Kato, Tadafumi Kelsoe, John Kittel-Schneider, Sarah Kuo, Po-Hsiu Kusumi, Ichiro Lavebratt, Catharina Manchia, Mirko Martinsson, Lina Mattheisen, Manuel McMahon, Francis J. Millischer, Vincent Mitchell, Philip B. Nöthen, Markus M. O’Donovan, Claire Ozaki, Norio Pisanu, Claudia Reif, Andreas Rietschel, Marcella Rouleau, Guy Rybakowski, Janusz Schalling, Martin Schofield, Peter R. Schulze, Thomas G. Severino, Giovanni Squassina, Alessio Veeh, Julia Vieta, Eduard Trappenberg, Thomas Alda, Martin Sci Rep Article Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen’s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures. Nature Publishing Group UK 2021-01-13 /pmc/articles/PMC7806976/ /pubmed/33441847 http://dx.doi.org/10.1038/s41598-020-80814-z Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Stone, William
Nunes, Abraham
Akiyama, Kazufumi
Akula, Nirmala
Ardau, Raffaella
Aubry, Jean-Michel
Backlund, Lena
Bauer, Michael
Bellivier, Frank
Cervantes, Pablo
Chen, Hsi-Chung
Chillotti, Caterina
Cruceanu, Cristiana
Dayer, Alexandre
Degenhardt, Franziska
Del Zompo, Maria
Forstner, Andreas J.
Frye, Mark
Fullerton, Janice M.
Grigoroiu-Serbanescu, Maria
Grof, Paul
Hashimoto, Ryota
Hou, Liping
Jiménez, Esther
Kato, Tadafumi
Kelsoe, John
Kittel-Schneider, Sarah
Kuo, Po-Hsiu
Kusumi, Ichiro
Lavebratt, Catharina
Manchia, Mirko
Martinsson, Lina
Mattheisen, Manuel
McMahon, Francis J.
Millischer, Vincent
Mitchell, Philip B.
Nöthen, Markus M.
O’Donovan, Claire
Ozaki, Norio
Pisanu, Claudia
Reif, Andreas
Rietschel, Marcella
Rouleau, Guy
Rybakowski, Janusz
Schalling, Martin
Schofield, Peter R.
Schulze, Thomas G.
Severino, Giovanni
Squassina, Alessio
Veeh, Julia
Vieta, Eduard
Trappenberg, Thomas
Alda, Martin
Prediction of lithium response using genomic data
title Prediction of lithium response using genomic data
title_full Prediction of lithium response using genomic data
title_fullStr Prediction of lithium response using genomic data
title_full_unstemmed Prediction of lithium response using genomic data
title_short Prediction of lithium response using genomic data
title_sort prediction of lithium response using genomic data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806976/
https://www.ncbi.nlm.nih.gov/pubmed/33441847
http://dx.doi.org/10.1038/s41598-020-80814-z
work_keys_str_mv AT stonewilliam predictionoflithiumresponseusinggenomicdata
AT nunesabraham predictionoflithiumresponseusinggenomicdata
AT akiyamakazufumi predictionoflithiumresponseusinggenomicdata
AT akulanirmala predictionoflithiumresponseusinggenomicdata
AT ardauraffaella predictionoflithiumresponseusinggenomicdata
AT aubryjeanmichel predictionoflithiumresponseusinggenomicdata
AT backlundlena predictionoflithiumresponseusinggenomicdata
AT bauermichael predictionoflithiumresponseusinggenomicdata
AT bellivierfrank predictionoflithiumresponseusinggenomicdata
AT cervantespablo predictionoflithiumresponseusinggenomicdata
AT chenhsichung predictionoflithiumresponseusinggenomicdata
AT chillotticaterina predictionoflithiumresponseusinggenomicdata
AT cruceanucristiana predictionoflithiumresponseusinggenomicdata
AT dayeralexandre predictionoflithiumresponseusinggenomicdata
AT degenhardtfranziska predictionoflithiumresponseusinggenomicdata
AT delzompomaria predictionoflithiumresponseusinggenomicdata
AT forstnerandreasj predictionoflithiumresponseusinggenomicdata
AT fryemark predictionoflithiumresponseusinggenomicdata
AT fullertonjanicem predictionoflithiumresponseusinggenomicdata
AT grigoroiuserbanescumaria predictionoflithiumresponseusinggenomicdata
AT grofpaul predictionoflithiumresponseusinggenomicdata
AT hashimotoryota predictionoflithiumresponseusinggenomicdata
AT houliping predictionoflithiumresponseusinggenomicdata
AT jimenezesther predictionoflithiumresponseusinggenomicdata
AT katotadafumi predictionoflithiumresponseusinggenomicdata
AT kelsoejohn predictionoflithiumresponseusinggenomicdata
AT kittelschneidersarah predictionoflithiumresponseusinggenomicdata
AT kuopohsiu predictionoflithiumresponseusinggenomicdata
AT kusumiichiro predictionoflithiumresponseusinggenomicdata
AT lavebrattcatharina predictionoflithiumresponseusinggenomicdata
AT manchiamirko predictionoflithiumresponseusinggenomicdata
AT martinssonlina predictionoflithiumresponseusinggenomicdata
AT mattheisenmanuel predictionoflithiumresponseusinggenomicdata
AT mcmahonfrancisj predictionoflithiumresponseusinggenomicdata
AT millischervincent predictionoflithiumresponseusinggenomicdata
AT mitchellphilipb predictionoflithiumresponseusinggenomicdata
AT nothenmarkusm predictionoflithiumresponseusinggenomicdata
AT odonovanclaire predictionoflithiumresponseusinggenomicdata
AT ozakinorio predictionoflithiumresponseusinggenomicdata
AT pisanuclaudia predictionoflithiumresponseusinggenomicdata
AT reifandreas predictionoflithiumresponseusinggenomicdata
AT rietschelmarcella predictionoflithiumresponseusinggenomicdata
AT rouleauguy predictionoflithiumresponseusinggenomicdata
AT rybakowskijanusz predictionoflithiumresponseusinggenomicdata
AT schallingmartin predictionoflithiumresponseusinggenomicdata
AT schofieldpeterr predictionoflithiumresponseusinggenomicdata
AT schulzethomasg predictionoflithiumresponseusinggenomicdata
AT severinogiovanni predictionoflithiumresponseusinggenomicdata
AT squassinaalessio predictionoflithiumresponseusinggenomicdata
AT veehjulia predictionoflithiumresponseusinggenomicdata
AT vietaeduard predictionoflithiumresponseusinggenomicdata
AT trappenbergthomas predictionoflithiumresponseusinggenomicdata
AT aldamartin predictionoflithiumresponseusinggenomicdata